PRODUCT CATALOGUE 2025 WE ARE THE ADVANCED DESIGN COMPANY The Advanced Design Company # We are the Advanced Design Company With 119 years of history behind us, we are one of the leading players in the HVAC sector, for the production and sale of hydronic terminals, chillers and heat pumps. Today, we look to the future, committing ourselves to a virtuous evolutionary path: adopting a new approach to design in our sector, Advanced Design. A path towards the development of technologically Advanced Solutions, with high performance and high customization, aimed at reducing its impact on the environment. Each new solution is the result of a collaboration between technical skills, creativity, a forward-looking vision and synergy with experts in different fields with the aim of anticipating trends in the HVAC sector. # What we mean by Advanced Design: - Anticipating future trends: We study how the environment and context in which we operate may evolve over time. This helps us understand how these scenarios will impact our specific sector, allowing us to anticipate trends. The collection of this information and the formulation of these scenarios is also made possible thanks to our established collaboration with the University of Bologna. - Open Innovation: We collaborate with experts from various sectors, promoting the exchange and contamination of ideas, and actively involving the customer in the analysis and development of dedicated solutions. This dynamic and open approach allows us to access a wide range of knowledge and perspectives, and to develop solutions that are increasingly technologically advanced, high-performance, highly customized, and oriented towards reducing their environmental impact. - Development based on a path of sustainability: We consider materials, processes, and supply chains to continuously reduce the company's environmental impact in terms of resource use and waste generation. Additionally, we are committed to making an increasing contribution to promoting social sustainability by actively supporting important local cultural and social initiatives, fostering the growth and development of the area. To continue on this path, in the coming years we will set increasingly sustainability-oriented specific goals. - Systemic approach: Beyond the technical characteristics of our solutions, we also focus on how they can best integrate within the context in which they will be installed. We aim to optimize the entire system, recovering wasted energy and finding flexible solutions, such as those that allow the replacement of existing products without completely modifying the system, contributing to greater energy and economic sustainability for the customer. Advanced Design is now the heart of our philosophy. # WE ARE THE ADVANCED DESIGN COMPANY Always looking beyond, putting people at the center of our solutions. This is what designing the future means to us. Behind us, 119 years of history and tradition; ahead of us, a path oriented towards Advanced Design where the person is increasingly at the center of our solutions. For us, this means designing the future. 1906 ### **ESTABLISHMENT** Ugo Galletti opened a small iron works factory and workshop for repairing agricultural equipment in Castel Maggiore, a town located near Bologna. 1920 # COLD IS IN ITS DNA The company began its expansion by specializing in the production of icemaking moulds. 1930 ### **GROWTH** Galletti became an enterprise with more than 100 employees, working sheet metal as a subcontractor. 1950 ### THE WAR AND LARGE WORK ORDERS It was the job of Ugo's sons, Fiorenzo and Luigi Galletti, to organize the recovery, with work orders from such prestigious companies as Ferrari, Lamborghini Trattori, Ducati, Landini and Ferrovie dello Stato. Galletti also began manufacturing motorcycle chassis. 1960 ### THE BOOM YEARS Galletti ceased being a subcontractor and entered the heating market with its own brand. 1970 #### FRESH AIR A new range of products for air conditioning. After the heating sector, Galletti achieved great success in the air-conditioning market with its Polar Warm fan coil 1980 # WINDS FROM JAPAN A partnership was established with a large Japanese air conditioning manufacturer. Galletti became the exclusive distributor for Italy of domestic split air conditioners. In 1982 the company moved to its current location in Bentivoglio. 1994 # EUROVENT CERTIFICATION Galletti obtained Eurovent certification for all of its products. A guarantee of quality and reliability. 2006 ### THE CENTENNIAL The company celebrated its 100th year, and under the leadership of its CEO Luca Galletti, it confirmed its position as a leader in the market for hydronic indoor units and chillers. 2014 ### THE GROUP The Group reached its full size of 8 different companies with 8 production plants, offering a comprehensive package of finished products and services in the HVACR sector. 2020 # NEW CLIMATIC CHAMBER Inauguration of the new climatic chamber for testing medium and high-power heat pumps and chillers, which rounded out one of the most advanced R&D departments in the sector, confirming the company's strategic choice of continuous growth regarding highly complex solutions and systems. 2021 # ENVIRONMENTAL CERTIFICATION Galletti obtained UNI EN ISO 14001:2015 Environmental Certification. 2024 ### ADVANCED DESIGN: A NEW PATH TOWARDS THE FUTURE We analyze materials and processes, promoting the exchange of ideas with experts from various fields to develop technologically advanced, high-performance solutions with low environmental impact. EPD certification: (Acqvaria, Acqvaria i, VIs). 5 Three strategic processes The great strength of Galletti, as well as of all the other Group companies, is that of continuing to maintain internally the 3 strategic processes which are the pillars of every new solution. Research and development The market requires products that are increasingly on the cutting edge for quality, performance, and energy efficiency. In order to satisfy this demand, Galletti has been relying for decades on a modern in-house R&D department. This department is a vital part of the company; it works in close cooperation with Production and Quality Control to guarantee a product that has been studied in the smallest detail. The constant desire to improve the product is matched by the need to refine the research and development techniques. The company possesses a calorimetric chamber for the hydronic indoor units and two climatic chambers for the chillers, and it is one of the few companies in Italy to possess a reverberation chamber for measuring true sound levels. # Design That which is developed, conceived, and analyzed in the R&D Department then takes shape in the Engineering Department, which handles the mechanical and electrical design of the hydronic indoor units, chillers, and heat pumps. The Engineering Department's dedicated team handles the development of software and hardware solutions; unlike their competitors, this activity allows the company to make proposals to the market that are open to its customers' requirements. competitive advantage over the other players in the market. # Galletti can boast a unique achievement: a completely integrated work centre. ## Great precision for great capacities The new climatic chamber at the Bentivoglio Galletti plant represents the company's commitment to invest in the accuracy of its claimed performance, due to the possibility of testing the units under actual operating conditions. The tests can be conducted on either chillers and heat pumps or multi-purpose units and free-cooling units up to a rated cooling capacity of 600 kW, representing a benchmark for R&D Department activities and an important technological milestone for the company. # A cutting-edge system Thanks to the three independent test circuits and the more than 100 sensors positioned between the testing room and the rest of the system, this chamber is the ideal instrument for monitoring the thermal, electrical, and acoustic performance of the chiller units. The advanced hydraulic system allows the units' condensation heat to be dissipated with the assistance of three 5000-liter storage systems and a water-water cooling unit manufactured by Galletti connected to a dry cooler. The actual behavior of the system in the heating mode is simulated thanks to the addition of a further storage tank to mitigate the negative effects of the defrosting periods. Test conditions can vary within a very wide temperature and humidity range (-20 - 55 °C ambient temperature; 20 - 95 % relative humidity), and the unit can be tested by simulating partial-load operation with or without the presence of glycol in the system. The latter can be recycled and used again in subsequent tests. ## Accuracy of the measurements The structure of the chamber and all of its components have been designed and selected in order to achieve the best possible measurement accuracy and in accordance with the main reference standards. The probes used for temperature regulation have class A accuracy, while the sensors used for the measurements on the unit being tested have a degree of accuracy of 1/10 DIN, which is able to keep the measurement error within \pm 0.03 °C. In addition, each test circuit is equipped with different capacity flow meters to guarantee the correct measurement of the flow rate for units of different capacity. The chamber has an internal volume of about 800 m3, and has been designed to guarantee dimensions and air speeds (< 1.5 m/s) that make it possible to meet the requirements of Standard UNI 9614 for the measurement of noise emissions, while monitoring the ambient air and produced water temperatures. 9 ## Viewed tests and performance reports An automatic system supervision and control software program developed in the Lab VIEW environment makes it possible to reach the stability conditions defined by Standards EN 14511 and EN 14825 under the desired test
conditions. The acquisition system then begins recording the data, and at the end of the procedure a summary report is prepared that can be sent to the customer by e-mail. The entire test procedure can be viewed on site or remotely using a video camera. In this manner, a customer that would like to carry out a viewed test can monitor the unit's main operating data under the actual design conditions, such as: - Power delivered - Temperature of water produced - Water pressure drop - Water flow - Electricity consumption and time efficiency ### Regulations of Eco-design and energy labeling The European Council has approved the 2030 climate and energy framework which sets three main objectives for its member states: To achieve these goals, the EU has adopted the ErP directive 2009/125/CE (Energy-related Products), which regulates the eco-design requirements for all energy-using products and directive 2010/30 / EC on energy labeling. There are three main European regulations that lay down the rules for the application of Directives 2009/125/EC and 2010/30/EC: - **»** 813/2013; - **»** 811/2013; - » 2281/2016. The seasonal energy efficiency of heating space η_s is calculated as the seasonal efficiency coefficient SCOP divided by the conversion coefficient CC, corrected for the contributions in relation to the temperature controls (F1) and for the water/water heat pump units for the consumption of one or more groundwater pumps (F2). The coefficient for conversion of electricity into primary energy was considered equal to CC = 2.5. $$\eta_s = SCOP / CC - F(1) - F(2)$$ The calculation for the seasonal energy efficiency of cooling space $\eta_{s,c}$, which derives from SEER seasonal efficiency, is the same. $$\eta_{s,c} = SEER / CC - F(1) - F(2)$$ Regulation 813/2013 applies to heat pumps with a rated capacity of less than 400 kW. For this range of capacities, minimum requirements for sound power level and seasonal energy efficiency are defined. # Regulations of Eco-design and energy labeling The latter index must not be less than the following values: | SCOP ⁽¹⁾ | Air-water | Water-water | |------------------------------------|-----------|-------------| | Combined heat pumps and heat pumps | 2,83 | 2,95 | | Low temperature heat pumps | 3,20 | 3,33 | Regulation 811/2013 applies to heat pumps with a heating capacity of less than 70 kW. Manufacturers are required to highlight the energy label on the unit and to specify the energy efficiency class on all technical and commercial materials. Regulation 2281/2016 applies to chillers with cooling capacity up to 2000 kW and reversible heat pumps with cooling capacity between 400 and 2000 kW. For this range of capacities, minimum requirements for seasonal energy efficiency are defined; in fact, since January 1, 2021, the manufacturer cannot place units on the market with SEER values less than the following values: | SEER ⁽¹⁾ | Air-water | Water-water | |--|-----------|-------------| | Chiller with PC<400 kW | 4,10 | 5,20 | | Chiller and reversible heat pumps with 400≤PC<1500 kW | 4,55 | 6,50 | | Chiller and reversible heat pumps with 1500≤PC<2000 kW | 4,55 | 7,00 | Scope of Regulations 813/2013 and 2281/2016 | | Applied regulation | |---|--------------------| | Chiller with 0≤PC<2000 kW | 2281/2016 | | Reversible heat pumps with PC<400 kW | 813/2013 | | Reversible heat pumps with 400≤PC<2000 kW | 2281/2016 | The ErP directive involves and strongly influences the design of all our products Galletti, further stimulating the continuous pursuit of excellence, in terms of performance and reduction of the environmental impact. Compliance with the regulation is not a classification of merit or an efficiency class, but rather an indispensable requirement for CE marking, without which the product cannot be placed on the EC market. (1) Bin profile according to UNI EN 14825 Galletti started out on the road to certification in 1994, the year in which the company entered the Eurovent program for fan coils, later followed by chillers and heat pumps. Eurovent is a European authority that guarantees the energy, aeraulic, and efficiency performance of the products of the companies that are enrolled in its programs. It is based on the "Certify all" principle; therefore, participants are required to declare the performance of all their products included in a specific certification program, which, in this sense, represents a "guarantee of quality and professionalism" of the company itself. Regarding management systems, the journey began in 1999 and, in 2000, saw the certification of its quality system in accordance with the UNI EN ISO 9002:1994 standard. In the following years, Galletti adapted its management system to the new standards: first the UNI EN ISO 9001:2008 and then, subsequently, the UNI EN ISO 9001:2015. In 2003, the adaptation of its quality system and the continuous improvement of processes allowed the company to be certified in accordance with Directive 97/23/CE (PED), subsequently amended by 2014/68/EU (PED). In 2009, the company embarked on a journey that led its management system to certification in terms of occupazionale health and safety OHSAS 18001:2007 and, subsequently, to the new UNI ISO 45001:2018 standard. Since 2012 Galletti has been in compliance with European Regulation no. 2015/2067/UE which makes F-GAS certification mandatory for companies that manufacture stationary refrigeration, air conditioning, and heat pump equipment containing fluorinated refrigerant gases. This certification ensures that operators are refrigeration technicians with specific expertise in protecting the environment, such as the reduction of refrigerant gases emissions into the atmosphere. As part of Galletti's increasingly wide-ranging and constantly evolving certification system, a further important milestone was reached in December 2021, namely the obtaining of environmental certification in accordance with the standard UNI EN ISO 14001: 2015. This certification demonstrates our determination to uphold our corporate values, including the continuous improvement of our environmental performance and our focus on policies for sustainability. For Galletti, environmental certification is just a starting point, and every day the company is committed to setting objectives, attaining them and then setting new ones that are ever more ambitious. ### **Environmental Product Declarations** After obtaining Environmental Certification, EPDs (Environmental Product Declarations) were published for the Acqvaria and VLS products. Galletti's path is clear: the company's daily effort must be focused on becoming increasingly virtuous in developing high-quality products that meet our customers' needs while protecting the well-being of the planet to an ever greater extent. Galletti has constantly revamped its Bentivoglio plant year after year, investing in the reorganisation of production lines, new R&D areas and, of course, new buildings and offices. In 2010 the company decided to take a major step by investing in reducing its carbon footprint, starting with a state-of-the-art photovoltaic power plant with a capacity of 1 MWp and average annual production of around 1200 MWh/a of clean, self-generated energy. The same amount of energy produced by traditional systems using non-renewable energy sources would have produced around 600 tonnes of CO2 each year, an amount that exceeds the absorption capacity of 30,000 trees on an area equivalent to more than 100 hectares. The automated sheet metal working centre, the hydronic indoor unit assembly lines, the chiller department, the climatic and calorimetric chambers of the R&D Department, and the office buildings all use clean electricity produced by this plant. In addition, the company is part of an industrial park located in a specific geographical position in the middle of two protected areas that are particularly important for plant and animal biodiversity. The construction of this photovoltaic power plant has, therefore, had even greater value due to its direct contribution to protecting the area in which the company is located and with which the company has always had a very close connection. This is just the beginning of a long journey that, year after year, will lead us to gradually reduce our impact on the environment and our planet. We were born with a clear intention to bring to life something absolutely new and unique. Today, we continue to work with a forward-looking vision to build innovative solutions together, increasingly oriented towards energy and environmental sustainability. The Group has its roots in **Galletti Spa** and in the intuition of a **select pool of successful managers** in the air conditioning sector who, starting from **1995**, shaped a unique reality, creating new companies from scratch and acquiring others. **Galletti Group is today one of the very few entities still entirely Italian-owned** and boasts **several brands** within, each with its own specialization in the sector. It is the Group's reference brand specialized in the production and sale of **hydronic terminals, chillers, and heat pumps** for residential and commercial applications. A historic brand on the market, Cetra is today the company within the Galletti Group that **leads the air treatment** market for the residential and tertiary sectors. Company focused on **process cooling** which, thanks to more than thirty years of expertise, **offers tailor-made solutions** to meet the specific needs of its customers. Company providing **maintenance and technical support services and after-sales support** for the Galletti brand products. The great strength of the Galletti Group, in all these years, has been to **continue to keep the strategic processes** that are the pillars of each new solution internally: **Research and Development, Design and Production.** The in-house development
and design of semi-finished products, components and finished products guarantees extreme flexibility towards customer requests. Galletti has developed on its www.galletti.com web-area the new ON-LINE integrated platform for selection, configuration and the making of the economic offer of products. The software, whose use is easy and intuitive, allows the identification of the desired products by calculating their performances based on real working conditions and their configuration helping the user in choosing options and accessories. It also allows to obtain a detailed report which includes performances, dimensional drawings, tender specifications and the economic offer. ### **Product selection:** - **»** Filters to make the identification of the requested product easier - » Performance calculation and saving of results - **»** Performance comparison between products belonging to different series - **»** Wizard configuration of accessories and options for chillers, heat pumps and hydronic units - » Creation of a project which collects all products of interest - » Complete management of the storaged history projects #### Report - » Generation of a detailed list report in pdf format - » Choice of the sections to be included in the print: - Products performances - Dimensional drawings - Tender specifications In everyday life, we now consider smartphones and/or tablets to be indispensable tools that we can't live without. Being able to take advantage of their features also for reading our catalogue seemed to us to be a truly innovative solution, as well as a considerable advantage. This is why we have developed a section of our catalogue with elements that can "come to life" and provide an experience that goes far beyond a simple printed photograph. ### What can you find in this catalogue? Inside the product catalogue, you will find QR CODES marked by the purple icon shown here. Once you scan the code, by opening the camera or using a specific application for reading QR CODES, some multimedia content will be played on the device used (smartphone or tablet). The multimedia content, mainly product or corporate videos, are uploaded on Galletti's YouTube channel. Don't forget to follow us on all our other social media channels: LinkedIn and Instagram. Follow us and share! Galletti has always considered service to be of fundamental importance in order to provide an all-around range of offerings to its customers. For this reason it created GH Service specialized service provider. GH Service is at the customer's disposal from the design stage to the after-sales period; it operates through an extensive network of more than 100 service centres, which provide support to the numerous sales agents and distributors in Italy and around the world. Galletti after-sales service is equipped and competent to service all types of air conditioning units, whether designed for the comfort or tertiary sectors, for processing machinery or technological environments, air handling units or highly customized units, its primary aim being customer satisfaction. The company's internal and outsourced staff are highly qualified, have long-time technical experience and are kept constantly up to date through specific refresher training courses. Its specialized technicians are in possession of all necessary certifications for operating on refrigeration cycle units and are equipped with cutting-edge tools. GH Service is able to provide its customers various services and opportunities meeting a multitude of demands while providing highly customized services. - » System startup - » Trouble shooting - » Management and sales of spare parts - » Routine and special maintenance - » Telephone customer support systems - » Assembly of units at worksite - » Disposal of obsolete units - » Guaranteed sale of used units - » All-inclusive rental In a market where simply selling a product is no longer enough, Galletti, thanks to GH Service, presents itself as a single partner able to provide a comprehensive range of products and services. # Chiller unit and heat pump rentals: an additional service for Galletti customers Galletti Galletti's comprehensive range of products and services Galletti has been further expanded with a new service that meets the new needs of HVAC professionals. In recent years there has been strong growth in the use and consequent demand for Chiller unit and Heat Pump RENTALS. This approach was developed to maintain comfort conditions or solve technical problems in specific applications where, due to the limited duration of the required service, the type of system, or the production activity carried out, the traditional purchase of a unit is not the best option. Being able to quickly replace a unit and thus guarantee continuity of service and being able to air-condition a room for a limited period of time are requirements that prove to be increasingly appreciated year after year. GallettiGalletti, thanks to its leadership role in the field of air conditioning for the service industry and in the field of refrigeration in the context of processes, is now adding a new chiller unit and heat pump rental service to its already extensive range of products and services. Thanks to our partnership with a leading national company providing rental solutions for sectors such as trucks, cranes, worksite logistics, and earthmoving, Galletti Galletti offers the most suitable rental units for specific applications, such as: # Hotels and the hospitality industry units for handling emergency situations and ensuring guests' comfort #### The winemaking industry units for covering cooling requirements during the winemaking process that do not normally last beyond 2 months #### The large-scale retail sector units for the correct conservation of goods stored in warehouses # Non-permanent trade shows and events units for air-conditioning tensile structures, industrial buildings, and facilities that host summer or winter events ### **Production processes** units designed for industrial applications that require a temporary solution due to an unexpected breakdown #### Greenhouses specific units for the air conditioning needs related to plant cultivation in a controlled environment The units offered by Galletti Galletti through the rental service represent the state of the art in terms of efficiency, quiet operation, performance, and sturdiness, ensuring that the customer will have a suitable solution providing optimum levels of comfort that meets their needs, including installation and testing of the units carried out by Galletti specialized Galletti technicians and careful checks when the units are returned. Therefore, professionals in the industry can now easily find quality, reliability, and professionalism – the qualities that have made the Galletti Galletti brand famous worldwide – even using this new rental service. ### **TABLE OF CONTENTS** #### FC - Hydronic indoor units ART-U **CFV** pag. 28 pag. 74 Design fan coil unit with Recess-mounted fan a minimum depth of 10 coil with formwork cm only and EC motor 1 - 4 kW 1 - 4 kW **GHW ART-U Canvas** pag.78 pag. 34 High wall-mounted Design fan coil unit with fan coil units a minimum depth of 10 cm only and EC motor 1 - 4 kW **EFFETTO** pag. 82 Design module for air intake and diffusion **ESTRO** pag. 38 with the Coandă effect Fan coil units with centrifugal fan 1 - 11 kW **EFFETTO AirClissi** pag. 84 Coandă effect illuminated module ESTRO i pag. 52 Fan coil units with centrifugal fan **ACQVARIA** pag. 86 and EC motor Cassette fan coils 1 - 9 kW 3 - 10 kW **FLAT S** pag. 58 Fancoil with design cabinet, with a **ACQVARIA** i pag. 92 depth of 17 cm Cassette fan coils 1 - 3 kW with EC motor 3 - 10 kW **FLAT Si** pag. 62 Fancoil with design cabinet with a depth of pag. 98 17 cm, and EC motor High available head duct 1 - 3 kW fancoil units 1 - 4 kW pag. 66 Design fan coil units **DMP** pag. 104 FLAT i Design fan coil unit with centrifugal fan and EC motor 2 - 5 kW **DUCTIMAX** pag. 108 Medium-head ducted units 2 - 8 kW Wired Plenum with Motorized Dampers pag. 70 ### **PRODUCT CATALOGUE** **DUCTIMAX** i Medium available head duct units with EC motor 2 - 8 kW pag. 114 pag. 120 pag. 136 pag. 146 UTN i High-head thermal ventilating units with EC motor 4 - 18 kW **UTN** High-head thermal ventilating units 3 - 23 kW **AREO** Fan heaters with ON/ OFF electric motor 8 - 101 kW **DST** Air destratifiers 1700 - 9100 m³/h pag. 150 pag. 128 AREO i Air conditioning fan heaters with EC motor 19 - 62 kW # CO - Controllers and software for indoor hydronic units pag. 158 **EVO-2-TOUCH** Touch screen display interface **MYCOMFORT** Electronic microprocessor controller with LCD display pag. 164 Electronic microprocessor controller with remote user interface pag. 160 **TED** Simplified electronic controller pag. 166 **EVO DISP** User interface with LCD display pag. 161 **EVO LINK** Monitoring system with 5" touch screen for the air-conditioning system pag. 167 **GALLETTI APP** Indoor unit control application for smartphones pag. 162 21 GAPCBX251A www.galletti.com ### **TABLE OF CONTENTS** ### AW - Air chillers and heat pumps MPE Outdoor packaged unit 4 - 76 kW pag. 172 EvitecH Outdoor packaged unit 50 - 180 kW pag. 220 MLI High-efficiency full inverter compact outdoor packaged units 5 - 30 kW pag. 184 V-IPER Outdoor packaged units 50 - 380 kW pag. 228 **DLI**Split units with EC compressor **6 - 16 kW** LCX Outdoor packaged unit 55 - 360 kW pag. 240 MLP High-efficiency full inverter compact outdoor packaged units 6 - 16 kW pag. 196 VLS Outdoor packaged unit 160 - 590 kW pag. 256 PLP Outdoor packaged unit with R290 37 - 63 kW **GLE**Outdoor packaged unit **650 - 1130 kW** pag. 276 PLI High-efficiency full inverter compact outdoor packaged units 35 - 55 kW Out cor 5 - MTE Outdoor motor-driven condensing units 5 - 166 kW pag. 284 PLE Outdoor packaged unit 50 - 160 kW LRE Indoor and outdoor motor-driven evaporating units 40 - 680 kW pag. 294 ###
PRODUCT CATALOGUE # WW - Water chillers and heat pumps MCW Indoor packaged unit 5 - 39 kW WRE Indoor packaged unit 40 - 750 kW WLE Indoor and outdoor packaged unit 42 - 750 kW pag. 332 # MF - Total heat recovery multi-purpose units MLE Outdoor packaged air-water unit 40 - 240 kW **LEP** Indoor packaged water-water unit 50 - 470 kW pag. 364 # **CETRA** ## **PRODUCT CATALOGUE** # CT - Heat recovery and thermal ventilating unit RPE Mechanical ventilation units with heat recovery 500 - 6000 m³/h pag. 382 # FC - HYDRONIC INDOOR UNITS | Introduction | p.26 | | | |--------------|------|-------------------|-------| | Fan coil | | Cassette | | | ART-U | p.28 | EFFETTO | p.82 | | ART-U Canvas | p.34 | EFFETTO AirClissi | p.84 | | ESTRO | p.38 | ACQVARIA | p.86 | | ESTRO i | p.52 | ACQVARIA i | p.92 | | FLAT S | p.58 | Ducted unit | | | FLAT S i | p.62 | FHP | p.98 | | FLAT | p.66 | DMP | p.104 | | FLAT i | p.70 | DUCTIMAX | p.108 | | CFV | p.74 | DUCTIMAX i | p.114 | | GHW | p.78 | UTN | p.120 | | | | UTN i | p.128 | # Vast range with over 1000 options! It's 1961 and Galletti with its Jolly copper radiating plate enters the air conditioning world! More than half a century has gone by since then, there have been changes in the types of system and their intended use, markets and consumer demands grow and Galletti is still among the leaders in this sector. The target is to come up with the most comprehensive range of solutions for indoor hydronic units with technologies and designs that, abreast with engineering evolution, have upgraded with the precise intention of combining reliability and innovation. Today the offerings are completed with fan coil units with centrifugal or tangential fan, hybrid units specifically designed for residential applications, cassette units with axial-centrifugal fan, medium- and high-head ducted units and - in homage to tradition - convection heating models. # Energy savings with inverter-controlled EC motors In the air conditioning sector there is by now a well-established trend toward the offering of solutions that combine performance and low energy consumption. In line with its objective of continual innovation Galletti offers solutions with brushless motors which guarantee: - » comfort of use thanks to the complete modulation of the air flow - » about 50% operating costs saving compared to the conventional motors - » the temperature setpoint in the air conditioned rooms is reached quickly - » the power delivered is constantly adjusted according to the actual load conditions - » exceptionally quiet operation at low speed, as in night-time mode ## Quiet operation The design of all the ventilation components of Galletti indoor units is developed exclusively by the company's engineering staff, backed by research and development facilities and over 50 years of specific know-how. More specifically, the most recent studies on materials and aerodynamic profiles have led to the development of special fans and scrolls conceived to ensure performances in terms of quiet operation that are among the best in Europe and Eurovent certified, combined with a correct distribution of air, which assures maximum interior comfort in any operating mode. ## Design and materials On its hydronic indoor units Galletti uses cabinets with an exclusive design, ideal for both residential and commercial settings. The quality of the materials used for their construction assures that they fully retain their characteristics over time. The plastic parts are made of UV-stabilized ABS to maintain their colour intact over time. The steel parts consist of 10/10 mm sheet with a double layer of paint, UV resistance class RUV 3 according to standard EN 10169-2. ### Efficient climate control Galletti offers a wide range of on board or wall mounted controllers comprising more than 20 options according adjustment degree and comfort required. Design and technology are combined in the latest-generation LED or LCD controllers: EVO, EVO-2-TOUCH e MYCOMFORT, which represent the state of the art in intelligent control of an indoor unit connected to a chiller or heat pump. Management systems, master/slave options, auto adaptive adjustment of chiller/water pump, control of room humidity are only some of the salient features of qualified and reliable offerings. # Pressure-independent regulating valves (optional) They can be combined with ON/OFF or MODULATING servomotors, guaranteeing a dynamic balancing of the system and preset regulation (thereby avoiding any calculation required by traditional balancing). They also offer a multitude of advantages, including: - Efficient energy transfer and minimal pumping costs due to the absence of overflow in partial load conditions as a result of the precise pressure-independent flow control. - Lower investment in the choice of pumps and reduced energy consumption since the required pressure head is lower than that of traditional configurations. Thanks to integrated piezometric connections, the solution to problems and the pumping optimization process can be achieved more quickly and easily. - the costly commissioning of the system is no longer required to regulate the flow rate to the indoor units under rated conditions. - The reduced movements of the modulating actuator, thanks to the integrated differential pressure regulator, guarantee a longer service life of the actuator itself and prevent the ambient temperature from being affected by the system's pressure fluctuations. - The stability of the ambient temperature makes it possible to achieve a lower average temperature with the same level of comfort. - Less complaints from system operators, because the flow rate, due to the correct functioning of the valve, never deviates from the design values. - The installation of balancing valves in the distribution network is no longer required. AVAILABLE FOR: ESTRO; ESTROi; DUCTIMAX; DUCTIMAXi; ACQVARIA; UTN; UTNi # Fan coil unit with Design cabinet, only 10 cm of minimum depth and EC motor # **ART-U1-4kW** Tangential fan 2 nines Vertical installation - » A furnishing with an innovative design and width up to only 10 cm - » Inverter-controlled EC motor - » Low energy consumption Finish Metallic brushed finish Metallic matt finish ### Design-driven innovation From the extensive experience of Galletti in the development and design of fan coil units, and in confirmation of its continuous search for innovation, ART-U was created, a perfect combination of performance and design. ART-Uis a unique product that, on the one hand is able to meet the increasingly stringent demands for energy efficiency, while on the other hand it reflects, for the first time, the latest trends in furnishings and interior design. With its width, which in some places is only 10 cm, and thanks to its unique lines, it was designed to be an absolutely all-purpose product that adapts perfectly to rigorous and essential environments as well as to warmer and more sophisticated spaces. The achievement of extremely high aesthetic standards has not weakened the usual construction integrity of Galletti products: striving for innovation has, in fact, also focused on the components and the use of new materials. With ART-U the state of the art has been redefined also in terms of technical performance, thanks to the use of computational fluid dynamics simulations for the optimisation of the heat exchange inside the indoor unit combined with the use of permanent magnet electric motors. It is the only innovative product that combines design, reduced width, and energy efficiency. ### **Design Contest** Its evolution has just begun but has already received important acknowledgment, winning over the judging panels of the most prestigious international industrial product design awards. ### **AVAILABLE VERSIONS** The versions of ART-U whose front panel has a metallic finish are summarised in the CMF table (Colours, Materials, Finishes). CMF is a true industrial design tool that focuses on the chromatic, tactile, and decorative identity of products and environments. | ART-U | | Metallic Skin | | | | | | | | |----------|--------|---------------|-------------|---------------|--|--|--|--|--| | | Grey | White | Red | Black | | | | | | | | | | | | | | | | | | Color | Silver | White RAL9010 | Red RAL3020 | Black RAL9005 | | | | | | | Material | | Alu | minium | | | | | | | ### MAIN COMPONENTS #### Cabinet with a refined design The elegant front panel consists of two sheets of aluminium with a polyethylene core and possibly a polyester-based surface coating. It is a light but very resistant material, created for covering façades in the building sector. The side panels are made of UV-stabilized ABS to maintain the colour over time. The polyethylene core acts as a flexible filler and thermal insulation while the aluminium provides structural strength and aesthetics ### Conveyors Made of PVC. They are designed to optimise the air flow inside the hydronic indoor unit allowing optimal distribution of the air flow in the coil and low noise in every operating mode. ### **Upper grille** Consisting of adjustable fins made of anodised aluminium, compatible for on-board control installation. The ABS combs support the grilles and prevent them from being bent, thus always guaranteeing the user's safety. ### Front grille Steel. Designed to stabilize the operation of the tangential fan ### **Electric motor** Permanent magnet EC motor with inverter integrated in the ventilation unit. An IP44, protection rating is guaranteed; therefore, dust inside is avoided and resistance to water spray is guaranteed. ### **Tangential fans** Tangential fan, statically and dynamically balanced to reduce its noise during operation. The plastic material used for the blades guarantees, in comparison with metal fans, a reduction in vibrations and an absence of bending along the rotation axis. The blades are alternated with intermediate reinforcement disks in order to increase their
sturdiness. #### **Heat exchangers** With a high efficiency turbocoil-type heat exchanger, and made with copper tubing and aluminium fins, it is equipped with brass manifolds and a vent valve. The hydrophilic treatment is applied to the fins as a standard treatment, to increase their efficiency during cooling and at the same time a greater resistance to aggressive atmospheres. #### Air filter Honey-comb polypropylene washable air filter, easily removable for maintenance operations. ### AVAILABLE VERSIONS #### **ART-U Grey** The use of a natural brushed aluminium front panel combined with black side panels enhances the absolute elegance of this unique fan coil and its reduced width. This product, with its simple, clean, and essential lines, adapts perfectly to spaces where furnishings follow the latest trends and where a high level of design is required for each item. #### **ART-U White** The neutrality of the white ensures maximum integration with the space in an adaptive context, allowing the fan coil unit to almost disappear into the wall. # AVAILABLE VERSIONS ### **ART-U Red** Thanks to the refined and elegant lines of this product, even a strong and decisive colour like red actually further enhances the unique personality of ART-U and turns it into a true furnishing classic. #### **ART-U Black** The unique black colour solution allows the fan coil to blend into the surrounding space, providing a touch of absolute elegance. ### **ACCESSORIES** ### **EVO-2-TOUCH** The new EVO-2-TOUCH controller can also be installed directly on the unit and guarantees maximum temperature and humidity comfort combined with the ergonomics of its touch screen. The tap and swipe functions make the control experience similar to that of your smartphone. The various screens are designed to make human-machine communication intuitive. Each page contains a few essential items of information that allow the consultation of the unit's main operating parameters and enable the initial control configuration according to system requirements. The external frame of the interface is available in four different chrome plating options and is made with double aluminium foil and a polyethylene core. #### **DISC-COVER** The minimalist style of the DISC-COVER is in harmony with the elegant and essential lines of ART-U. Available in three different colours: white RAL9010, black RAL9005, and red RAL3020. It adapts perfectly to the style of the space to be air-conditioned, whether it be severe and formal or ironic. Its shape was purposely designed to make installation quick and easy even during cleaning and maintenance operations. The magnet coupling system allows its position to be adjusted according to the installation height and the position of the pipes. | ACCES: | Sories | |-----------------|--| | Electronic mici | roprocessor control panels with display | | DIST | MY COMFORT controller spacer for wall mounting | | E2TK | Touch screen 2.8" user panel for EVO control EVO-2-TOUCH, frame in aluminium color black RAL9005 | | E2TY | Touch screen 2.8" user panel for EVO control EVO-2-TOUCH, frame in natural brushed
aluminium | | E2TW | Touch screen 2.8" user panel for EVO control EVO-2-TOUCH, frame in aluminium color white RAL9010 | | E2TR | Touch screen 2.8" user panel for EVO control EVO-2-TOUCH, frame in aluminium color red RAL 3020 | | EVOBOARD | EVO control circuit board ART-U | | EVODISP | User interface for ART-U EVO control with display | | EYNAVEL | Device for Wi-Fi or Bluetooth communication between EVOBOARD and smartphone | | KBEVS | EVODISP on-board installation Kit for ART-U | | MCLE | Microprocessor control with display MY COMFORT LARGE | | MCSUE | Humidity sensor for MY COMFORT (medium e large), EVO | | MCSWE | Water sensor for MYCOMFORT and EVO controllers | | TOUCHKB-W | Kit for installation of EVO-2-TOUCH onboard of ART-U version White | | TOUCHKB-Y | Kit for installation of EVO-2-TOUCH onboard of ART-U, Grey, Red e Black version | |----------------------|---| | Electronic mic | croprocessor control panels | | TED SWA | Water temperature sensor for TED controls | | TED10 | Electronic controller for BLDC fan equipped with inverter and ON/OFF valves 230 V | | TEDKB-W | On-board ART-U White version installation kit suitable for TED controller | | TEDKB-Y | Kit for installation of TED onboard of ART-U, Grey, Red and Black version | | Auxiliary wat | er drip trays, insulating shell, condensate drainage pump | | GIVK-2 | Insulating shell for KV - 2 ways valve | | GIVK-3 | Insulating shell for VKS – 3 ways valve | | Base and encl | losure elements | | DISC-K | Covering foot for ART-U fan coil - black RAL 9005 | | DISC-R | Covering foot for ART-U fan coil - red RAL 3020 | | DISC-W | Covering foot for ART-U fan coil - white RAL 9010 | | Valves | | | V2VSTD | 2-way valve, ON/OFF or MODULATING actuator, 230 V or 24V power supply, hydraulic kit, for main heat exchanger | | V3VSTD | 2-way valves, ON/OFF or MODULATING actuator, 230 V or 24 V power supply, hydraulic kit, for main heat exchanger | | | | ### RATED TECHNICAL DATA | ART-U | | | | 1 | 0 | | | 2 | 20 | | | 3 | 0 | | |---------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------| | Speed | | | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | | Control voltage | (E) | ٧ | 2,00 | 5,50 | 7,00 | 10,0 | 2,00 | 5,50 | 7,00 | 10,0 | 2,00 | 5,50 | 7,00 | 10,0 | | Total cooling capacity | (1)(E) | kW | 0,31 | 0,76 | 0,90 | 1,13 | 0,58 | 1,15 | 1,41 | 1,76 | 0,63 | 1,46 | 1,76 | 2,18 | | Sensible cooling capacity | (1)(E) | kW | 0,21 | 0,63 | 0,73 | 0,91 | 0,42 | 0,89 | 1,08 | 1,36 | 0,45 | 1,18 | 1,44 | 1,78 | | FCEER class | (E) | | | | C | | | | C | | | | В | | | Water flow | (1) | l/h | 53 | 132 | 156 | 198 | 100 | 198 | 242 | 303 | 108 | 253 | 305 | 379 | | Water pressure drop | (1)(E) | kPa | 1 | 4 | 5 | 8 | 2 | 6 | 9 | 13 | 2 | 12 | 17 | 24 | | Heating capacity | (2)(E) | kW | 0,29 | 0,82 | 1,05 | 1,40 | 0,53 | 1,09 | 1,31 | 1,62 | 0,63 | 1,54 | 1,87 | 2,30 | | FCCOP class | (E) | | | | | | | (| C | | | | | | | Water flow | (2) | l/h | 51 | 143 | 183 | 243 | 92 | 189 | 228 | 282 | 109 | 267 | 324 | 400 | | Water pressure drop | (2)(E) | kPa | 1 | 4 | 6 | 11 | 2 | 7 | 10 | 14 | 2 | 12 | 17 | 24 | | Rated air flow | | m³/h | 40 | 148 | 207 | 312 | 82 | 224 | 287 | 389 | 91 | 302 | 374 | 461 | | Power input | (E) | W | 4 | 7 | 9 | 14 | 4 | 10 | 12 | 17 | 5 | 11 | 15 | 24 | | Total sound power level | (3)(E) | dB(A) | 28 | 41 | 46 | 54 | 28 | 41 | 47 | 54 | 28 | 42 | 47 | 54 | | ART-U | | | | 4 | 10 | | | | 50 | | |---------------------------|----------------|-------|------|------|------|------|------|------|------|------| | Speed | | | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | | Control voltage | (E) | ٧ | 2,00 | 5,50 | 7,00 | 10,0 | 2,00 | 5,50 | 7,00 | 10,0 | | Total cooling capacity | (1)(E) | kW | 0,76 | 1,84 | 2,37 | 3,12 | 0,92 | 2,32 | 2,89 | 3,69 | | Sensible cooling capacity | (1)(E) | kW | 0,53 | 1,38 | 1,77 | 2,33 | 0,65 | 1,72 | 2,15 | 2,77 | | FCEER class | CEER class (E) | | | | | | В | | | | | Water flow | (1) | l/h | 131 | 315 | 406 | 535 | 157 | 398 | 496 | 634 | | Water pressure drop | (1)(E) | kPa | 2 | 12 | 17 | 29 | 3 | 13 | 19 | 29 | | Heating capacity | (2)(E) | kW | 0,74 | 1,99 | 2,49 | 3,21 | 0,95 | 2,56 | 3,16 | 4,02 | | FCCOP class | (E) | | | | C | | В | | | | | Water flow | (2) | l/h | 128 | 347 | 433 | 559 | 165 | 446 | 550 | 698 | | Water pressure drop | (2)(E) | kPa | 2 | 11 | 17 | 26 | 2 | 13 | 19 | 28 | | Rated air flow | | m³/h | 104 | 363 | 496 | 724 | 129 | 439 | 587 | 831 | | Power input | (E) | W | 5 | 12 | 17 | 27 | 5 | 12 | 18 | 30 | | Total sound power level | (3)(E) | dB(A) | 31 | 42 | 47 | 54 | 32 | 42 | 47 | 54 | ⁽¹⁾ Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 45°C / 40°C, air temperature 20°C (3) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) ### Fan coil ART-U Canvas Fan coil unit with Design cabinet, only 10 cm of minimum depth and EC motor # **ART-U Canvas 1 - 4 kW** ### Now it's up to you Thanks to ART-U Canvas, a new level in indoor air conditioning is being achieved. A product that was already a unique offering in its field is now being further enhanced: ART-Uis a versatile platform thanks to the complete customisation of the front panel. The fan coil panel becomes a veritable painter's canvas, ready to be customized by the interior architect. On ART-U Canvas any solid colour, image, or high quality photograph can be reproduced. No minimum quantities are required for the customization of the fan coil, to ensure maximum freedom for the interior architect, whatever the size of the project. With ART-U Canvas there are no limits to creativity; now it's up to you to choose the perfect version to blend in stylistically with the space to be air-conditioned. installation # **AVAILABLE VERSIONS** Canvas is available in two versions: Total Graphic Skin and Graphic Skin. Total Graphic Skin allows for the customisation of the entire surface of the front panel with the reproduction of graphics, photographs and plain color. The Graphic Skin version makes it possible to reproduce images while leaving the natural brushed aluminium or RAL9010 white panel partially visible. These two versions of ART-U Canvas are summarized according to the CMF table (Colours, Materials, Finishes). CMF is a true industrial design tool that focuses on the chromatic, tactile, and decorative identity of products and environments. ### **PLUS** - » A furnishing with an innovative design and width up to only 10 cm - » Inverter-controlled EC
motor - » Low energy consumption - » Complete customization of the front panel ### **AVAILABLE VERSIONS** Total Graphic Skin Graphic Skin | Colour | | Customised | | |-----------|------|--|--| | Material | | Aluminium | | | Finishing | Matt | Matt graphics and brushed metallic
background | Matt graphics and matt RAL9010 white metallic background | # ART-U CANVAS ART-U becomes a platform that can be customised according to the suggestions of the interior architect. The front panel colour can be selected from over 3000 colour variations offered by the RAL and PANTONE colour charts. Any geometric texture or material effect can create a unique design that expresses your personality in every detail. With ART-U Canvas there are no limits to creativity. The possibility of customising the panel with images and photographs makes this fan coil a true furnishing accessory. # **Fan coil ART-U Canvas** With ART-U Canvas, innovation goes hand in hand with imagination. This smart, high-performance fan coil was created to rewrite the rules of design and inspire customisations that go far beyond the surface of the fan coil. ### ART-U CREATOR ONLINE CONFIGURATOR Using the online ART-U Creator software you can give shape to your air conditioning design idea. This tool allows you to quickly configure your ART-U Canvas, choosing the graphics for the front panel and the colour of the other product components. There is a product for every solution: configuring the style of your interiors has never been so easy. Contact us at productsupport@galletti.it to request access to the first aesthetic configurator dedicated to fan coils. | 1 | EG | E | N | n | |---|----|---|----|---| | L | EU | | IV | ν | | NOTE: | FOR THE TECHNICAL DATA, REFER TO THE PAGE 33 TABLE OF ART-U. | |-------|---| | 2 | Condensate discharge diameter for vertical installation ø 17 mm | | 1 | Water connections standard heat exchanger ø 1/2" | | g | |---| | | | 2 | | 4 | | 7 | | 9 | | 1 | | | # **Hydraulic indoor units ESTRO** # Fan coil units with centrifugal fan # **ESTRO 1 - 11 kW** The most complete range of fan coil units on the market featuring the Galletti technology, quality level and reliability. The ESTRO series is undoubtedly the line of fan coil units with the most complete range of models and accessories that are able to meet the needs of professionals in the field The range consists of 20 models in 9 versions. For the ESTRO project we selected top quality materials which, together with the great care and attention dedicated to the assembly of the main constructive components, make the ESTRO fan coil units highly reliable from a performance standpoint while minimising noise levels. The conception underlying the ESTRO series construction makes it possible to combine models for vertical and horizontal installation: models for surface mounting on walls, floors/ceilings and recess mounting in walls/ceilings plus low body model for floor installation. In its recess-mounted ductable version, ESTRO has a number of accessories that permit quick and economical installation with flexible ducts directly coupled with air diffusion grilles ESTRO can be combined with a range of on-board or wall-mounted control panels consisting of 20 options, depending on the level of comfort and adjustment required. # **PLUS** - » 3 6 speed motor - » ABS centrifugal fans - » Heat exchanger up to 4 rows - » Reversible water connections - » Steel cabinet / ABS ## **AVAILABLE VERSIONS** ### **ESTRO FL** Version with cabinet, suitable for wall mounting. Vertical air flow, filter on the air intake securely attached to the cabinet with quarter-turn screws. ESTRO FL is available in 20 models. ### **ESTRO FA** Wall mounted with cabinet. The inclined front air flow makes the ESTRO FA version especially suited for installation in recesses up to a depth of 150 mm. ESTRO FA is available in 19 models. ### **ESTRO CL** Wall mounted with cabinet, vertical air flow. Designed with a range of pastel shades, it combines well with traditional furnishings and all architectures in which the warm colours and elegant shapes make ESTRO CL a perfect interior design accessory. Steel sheet panel colour: RAL 9001. ABS parts colour: PANTONE "warm gray 2 U" ESTRO CL is available in 20 models. ### **ESTRO FU** Version with cabinet, suitable for floor and ceiling mounting. The cabinet has air outlet grilles and air intake grilles with built-in filter. ESTRO FU is available in 20 models. ### **ESTRO FP** Version with cabinet, suitable for ceiling mounting. The air intake is located behind the air outlet grilles. This version is especially suitable if combining with external air intake louvers. ESTRO FP is available in 20 models. ### **ESTRO FB** Low-cabinet version, suitable for floor and ceiling mounting. The cabinet has air outlet grilles and air intake grilles with built-in filter. Rearranging the internal components has made it possible to reduce its height to just 438 mm ESTRO FB is available in 9 models. ### **ESTRO FC** Model for vertical and horizontal recess mounting, air intake in line with the outlet, thermally insulated galvanised sheet steel body. Plenum and connectors complete the air intake and the air flow into the room. ESTRO FC is available in 20 models. ### **ESTRO FF** Model for vertical and horizontal recess mounting, front air intake, thermally insulated galvanised sheet steel body. The front air intake allows horizontal or floor recessed installation with direct intake from the false-ceiling. ESTRO FF is available in 20 models. ### **ESTRO FBC** Low-cabinet version for vertical and horizontal recess mounting, front air intake with air filter, thermally insulated galvanised sheet steel body. Rearranging the strategic components has made it possible to reduce its height to just 412 mm. ESTRO FBC is available in 9 models. # **Hydraulic indoor units ESTRO** ## MAIN COMPONENTS ### **Cabinet** Composed of a painted steel sheet panel, side panels, air outlet grille (swinging by 180°) and back suction grille built from ABS. Round shapes and colours that can satisfy all interior decorating needs, in line with architectural requirements. ### **Structure** Built from galvanised steel sheet of extra thickness, heat and sound insulated by means of Class 1 self-extinguishing panels. FU, FB, FC, FF and FBC versions have a double drip tray for collecting condensate. ### **Heat exchanger** High efficiency heat exchanger made with copper piping and aluminium fins, provided with brass manifolds and vent valve. The water connections are reversible at the time of installation. On request it is possible to mount an additional heat exchanger for 4-pipe systems. ### **Electric motor** It is mounted on vibration dampers, with permanently activated capacitor and thermal protection of the windings, and is directly coupled with thefans. It is available as either a 3- or 6-speed version in order to meet all the specific needs of performance, quietness, and power consumption. ### **Fans** Double suction centrifugal fans, statically and dynamically balanced, manufactured from anti-static ABS, with blades having an airfoil section and offset modules. The fans are housed in a low-noise ABS volute with high-efficiency ### Air filter Honey-comb polypropylene washable air filter, easily removable for maintenance operations. On FU version the air filters are fitted onto the airinlet grille. ### CONFIGURATOR The models are completely configurable by selecting the version and the options. To the right is shown an example of configuration. | Version | Field | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | |---------|-------|---|---|---|---|---|---|---|---|---|----|----|--| | EF03 | | L | 0 | М | 0 | 1 | E | 0 | 0 | 0 | 0 | Α | | EF Product type ESTRO; 03 Size To verify the compatibility of the options, use the selection software or the price list. ### **CONFIGURATOR** ### Version - A Wall mounted with cabinet - B Wall installation with low-body cabinet - C Recessed installation - F Recessed installation - BC Low-body recessed installation L Wall mounted with cabinet G - CLASSIC Wall installation with cabinet - P Ceiling installation with cabinet U - Wall and ceiling installation with cabinet - Motor - 3-speed motor Electric fan with GreenTech BLDC motor BLDC motor G - 6 speed motor ### Main coil hydraulic side - Water connections on the left side - Water connections on the left side 4 rows ## Water connections on the right Water connections on the right side - 4 rows **Additional coil hydraulic side / heating element** 4 - Absent - RE Electrical heating elements - Water connections on the left side - Water connections on the right - Valve - Absent - VKS 3 ways valve 230 V ON/OFF complete hydraulic kit - KV 2 ways valve 230 V ON/OFF - VKMS 3 ways valve 24 V MODULATING complete hydraulic kit KVM 2 ways valve 24 V MODULATING VK524 3 way valve 24 V ON/OFF complete hydraulic kit KV24 2 way valve 24 V ON/OFF hydraulic kit on coil side - VKMSND 3 ways valve 24 V MODULATING hydraulic kit on coil side VKS24ND - 3 ways valve - 24 V - ON/OFF - hydraulic kit on coil side - VPIK 2-way valve pressure independent 230 V ON/OFF - VPIKM 2-way valve pressure independent 24 V MODULATING ## Control panel - CB On-board speed selector - TB Speed selector and thermostat - TIB Speed selector, thermostat and S/W selecting switch TED 2T microprocessor control for 2 pipes TED 4T microprocessor control for 4 pipes TED 10 microprocessor control for BLDC - MCBE My comfort base - MCME My comfort medium MCLE My comfort large LED 503 - D - EVOBOARD Circuit board - EVO BOARD+EVO DISP (Circuit board + display) EVOBOARD circuit board + NAVEL Wi-Fi module ## 0 - SA Remote air probe for MYCOMFORT, LED503 and EVO SW Water probe for MYCOMFORT, LED503 and EVO SU Humidity probe for MYCOMFORT and EVO - SA+SW
Remote air and water probes for MYCOMFORT, LED503 and EVO - SA+SU Remote air and humidity probes for MYCOMFORT and EVO - SA+SU+SW- Remote air, water, humidity probes for MYCOMFORT and EVO - TC Thermostat for minimum water temperature - SA Remote air probe for TED - SW Water probe for TED SA + SW Air and water probes for TED D - Accessories - Absent - BV Auxiliary drip tray - BH Auxiliary drip tray - GIVK Insulating shell 6 - Filter - 0 Standard filter air ### 10 Release - 0 - Α Α | CONTR | OL PANELS | | | |----------------|--|----------------|--| | Elecromechan | ical control panels | KL | LED503 on-board controller installation kit for ESTRO | | СВ | On-board speed switch | LED503 | Recessed wall-mounted electronic display controller LED 503 | | CD | Recess wall-mounted speed switch | MCBE | MYCOMFORT BASE electronic controller with display | | TB | On-board speed thermostat and switch | MCLE | Microprocessor control with display MY COMFORT LARGE | | TC | Thermostat for minimum water temperature in heating mode (42 °C) | MCME | MYCOMFORT MEDIUM electronic controller with display | | Electronic mic | roprocessor control panels with display | MCSUE | Humidity sensor for MY COMFORT (medium e large), EVO | | DIST | MY COMFORT controller spacer for wall mounting | MCSWE | Water sensor for MYCOMFORT and EVO controllers | | E2TK | Touch screen 2.8" user panel for EVO control EVO-2-TOUCH, frame in aluminium color | Electronic mic | croprocessor control panels | | LZIK | black RAL9005 | KB A | On-board ESTRO FA installation kit suitable for TED controller | | E2TY | Touch screen 2.8" user panel for EVO control EVO-2-TOUCH, frame in natural brushed | KB L DX | On-board ESTRO FL/FU/FB installation kit on the right side suitable for TED controller | | | aluminium | KB L SX | On-board ESTRO FL/FU/FB installation kit on the left side suitable for TED controller | | EVOBOARD | Circuit board for EVO control | TED 2T | Electronic controller for AC fan control and one ON/OFF 230 V valve | | EVODISP | User interface with display for EVO controller | TED 4T | Electronic controller for AC fan control and two ON/OFF 230 V valves | | EYNAVEL | Device for Wi-Fi or Bluetooth communication between EVOBOARD and smartphone | TED SWA | Water temperature sensor for TED controls | | KBESTE | MY COMFORT on-board installation kit for ESTRO | | · | | ACCE | SSORIES | | | |--------------|---|-----------|---| | Power inter | face and regulating louver controllers | S | Manual external air intake louver | | CSB | On-board controller for opening and closing the motor-driven regulating louver | SM | Motor-driven louver, with motor on the right with transformer | | CSD | Recess mounted controller for opening and closing the SM motor-driven regulating | SM | Motor-driven louver, with motor on the left with transformer | | CSD | louver | SMC | Motor driven louver, with motor on the right, with transformer | | KP | Power interface for connecting in parallel up to 4 fun coil units to the one controller | SMC | Motor driven louver, with motor on the left, with transformer | | Additional I | heat exchanger for 4-pipe systems | Valves | | | DF | 1-row additional heat exchanger for 4-pipe systems (not suitable for ESTRO "M" models) | KV | 2-way valve, ON/OFF actuator, hydraulic kit on water connection side for main heat
exchanger | | | ater drip trays, insulating shell, condensate drainage pump | KV24 | 2-way valve, ON/OFF actuator, 24V power supply, hydraulic kit on water connection | | ВН | Auxiliary water drip tray for horizontal installation fan coil units | RVZ4 | side for main heat exchanger | | BV | Auxiliary water drip tray for vertical installation fan coil units | KV24DF | 2-way valve, ON/OFF actuator, 24V power supply, hydraulic kit on water connection | | GIVKL | Insulating shell for VKS valve, water connections on the left | | side for main and additional heat exchanger | | GIVKR | Insulating shell for VKS valve, water connections on the right | KVDF | 2-way valve, ON/OFF actuator, 230 V power supply, hydraulic kit on water connection | | KSC | Condensate drainage pump kit | | side for main and additional heat exchanger | | | nclosure elements | KVM | 2-way valve, MODULATING actuator, 24 V power supply, hydraulic kit on water connection side for main heat exchanger | | D | Support elements for ESTRO FC | _ | 2-way valve, MODULATING actuator, 24 V power supply, hydraulic kit on water connec- | | ZA | Pair of support covering elements with front grille for ESTRO FA | KVMDF | tion side for main and additional heat exchanger | | ZAG | Pair of support covering elements for ESTRO FA | | 3-way valve, ON/OFF actuator, 230 V power suppply, complete hydraulic kit for | | ZC | Pair of support covering elements for ESTRO CL | VKDF | additional heat exchanger | | ZCG | Pair of support covering elements for ESTRO CL | | 3-way valve, ON/OFF actuator, 24V power supply, complete hydraulic kit for additional | | ZL | Pair of support covering elements for ESTRO FL | VKDF24 | heat exchanger | | ZLG | Pair of support covering elements with front grille for ESTRO FL | WINDERAND | 3-way valve, ON/OFF actuator, 24V power supply, hydraulic kit without holder, for | | Rear coveri | | VKDF24ND | additional heat exchanger | | PH | Rear painted panel for horizontal installation with cabinet | VKDFND | 3-way valve, ON/OFF actuator, 230 V power supply, hydraulic kit without holder, for | | PV | Rear painted panel for vertical installation with cabinet | VKDFND | additional heat exchanger | | Electrical h | eating elements | VKMDF | 3-way valve, MODULATING actuator, 24 V power supply, complete hydraulic kit for | | RE | Heating element with installation kit, relay box and safety devices | V KIVIDT | additional heat exchanger | | | d outlet grilles | VKMDFND | 3-way valve, MODULATING actuator, 24 V power supply, hydraulic kit without holder, | | GE | Aluminium external air intake grille with subframe | | for additional heat exchanger | | GEF | Aluminium external air intake grille with subframe and air filter | _ VKMS | 3-way valve, MODULATING actuator, 24 V power supply, complete hydraulic kit for main | | GM | Aluminium air outlet grille with 2-row fins and subframe | _ | heat exchanger | | RGC | Plenum with circular collars for air outlet grille | VKMSND | 3-way valve, MODULATING actuator, 24 V power supply, hydraulic kit without holder,
for main heat exchanger | | | d connectors | | 3-way valve, ON/OFF actuator, 1230 V power supply, complete hydraulic kit for main | | RA90 | Angular inlet connector | VKS | heat exchanger | | RAD | Straight inlet connector | _ | 3-way valve, ON/OFF actuator, 24V power supply, complete hydraulic kit for main heat | | RADC | Air inlet plenum with circular collars | VKS24 | exchanger | | RM90 | Angular outlet connector | | 3-way valve, ON/OFF actuator, 24V power supply, hydraulic kit without holder, for main | | RM90C | Angular outlet insulated connector | VKS24ND | heat exchanger | | RMCD | Straight outlet insulated connector | - WIKEND | 3-way valve, ON/OFF actuator, 230 V power supply, hydraulic kit without holder, for | | RMCD C | Air outlet plenum with circular collars | VKSND | main heat exchanger | | RMD | Straight outlet connector | VDIC | 2-way valves pressure independent, ON/OFF or MODULATING actuator, 230 V or 24 V | | External air | rintake louvers | VPIC | power supply, hydraulic kit, for main heat exchanger | # **Hydraulic indoor units ESTRO** | ESTRO | | | | 1 | | | 2 | | | 3 | | | 4 | | |---------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | | Total cooling capacity | (1)(E) | kW | 0,75 | 0,90 | 1,12 | 1,02 | 1,21 | 1,50 | 1,24 | 1,48 | 1,69 | 1,34 | 1,66 | 1,91 | | Sensible cooling capacity | (1)(E) | kW | 0,57 | 0,68 | 0,84 | 0,77 | 0,94 | 1,16 | 0,93 | 1,10 | 1,25 | 0,98 | 1,20 | 1,37 | | FCEER class | (E) | | | | | | | | E | | | | | | | Water flow | (2) | I/h | 129 | 155 | 193 | 176 | 208 | 258 | 214 | 255 | 291 | 231 | 286 | 329 | | Water pressure drop | (2)(E) | kPa | 4 | 5 | 7 | 7 | 9 | 13 | 8 | 11 | 14 | 7 | 10 | 13 | | Heating capacity | (3)(E) | kW | 0,95 | 1,11 | 1,32 | 1,21 | 1,48 | 1,82 | 1,45 | 1,72 | 1,84 | 1,50 | 1,81 | 2,15 | | FCCOP class | (E) | | | | | | | | E | | | | | | | Water flow | (3) | I/h | 164 | 191 | 227 | 208 | 255 | 313 | 250 | 296 | 317 | 258 | 312 | 370 | | Water pressure drop | (3)(E) | kPa | 5 | 6 | 8 | 8 | 11 | 15 | 9 | 12 | 14 | 6 | 9 | 12 | | Rated air flow | | m³/h | 127 | 189 | 231 | 167 | 233 | 319 | 210 | 271 | 344 | 214 | 271 | 344 | | Power input | (E) | W | 18 | 21 | 32 | 21 | 28 | 37 | 25 | 36 | 53 | 24 | 36 | 53 | | Total sound power level | (4)(E) | dB(A) | 30 | 32 | 40 | 37 | 42 | 47 | 38 | 44 | 49 | 40 | 44 | 50 | | ESTRO | | | | 4M | | | 5 | | | 6 | 6 6M | | | | |---------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | | Total cooling capacity | (1)(E) | kW | 1,48 | 1,81 | 2,19 | 1,57 | 1,99 | 2,36 | 1,73 | 2,34 | 2,87 | 1,90 | 2,60 | 3,23 | | Sensible cooling capacity | (1)(E) | kW | 1,04 | 1,28 | 1,55 | 1,15 | 1,53 | 1,82 | 1,23 | 1,66 | 2,05 | 1,30 | 1,79 | 2,24 | | FCEER class | (E) | | | D | | | E | | | D | | | D | | | Water flow | (2) | l/h | 255 | 312 | 377 | 270 | 343 | 406 | 298 | 403 | 494 | 327 | 448 | 556 | | Water pressure drop | (2)(E) | kPa | 10 | 14 | 20 | 8 | 12 | 16 | 6 | 9 | 13 | 7 | 12 | 17 | | Heating capacity | (3)(E) | kW | 1,53 | 1,88 | 2,29 | 1,74 | 2,26 | 2,70 | 1,76 | 2,37
 2,94 | 1,94 | 2,68 | 3,37 | | FCCOP class | (E) | | | | | | | Į. | E | | | | | | | Water flow | (3) | l/h | 263 | 324 | 394 | 300 | 389 | 465 | 303 | 408 | 506 | 334 | 461 | 580 | | Water pressure drop | (3)(E) | kPa | 9 | 12 | 17 | 8 | 12 | 17 | 5 | 8 | 11 | 6 | 10 | 15 | | Rated air flow | | m³/h | 211 | 271 | 344 | 267 | 341 | 442 | 293 | 341 | 442 | 241 | 341 | 442 | | Power input | (E) | W | 30 | 45 | 66 | 29 | 44 | 57 | 29 | 43 | 56 | 29 | 43 | 56 | | Total sound power level | (4)(E) | dB(A) | 41 | 45 | 51 | 35 | 43 | 48 | 36 | 42 | 48 | 35 | 43 | 49 | | ESTRO | | | | 7 | | 8M | | | | | | | | | |---------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | | Total cooling capacity | (1)(E) | kW | 1,94 | 2,58 | 3,45 | 2,44 | 3,33 | 4,48 | 2,47 | 3,21 | 4,23 | 2,74 | 3,64 | 4,86 | | Sensible cooling capacity | (1)(E) | kW | 1,41 | 1,99 | 2,69 | 1,69 | 2,31 | 3,12 | 1,76 | 2,39 | 3,05 | 1,90 | 2,53 | 3,40 | | FCEER class | (E) | | | E | | | D | | | D | | | D | | | Water flow | (2) | l/h | 334 | 444 | 594 | 420 | 573 | 771 | 425 | 553 | 728 | 472 | 627 | 837 | | Water pressure drop | (2)(E) | kPa | 4 | 7 | 12 | 6 | 11 | 18 | 5 | 8 | 12 | 7 | 12 | 20 | | Heating capacity | (3)(E) | kW | 2,39 | 3,13 | 4,05 | 2,51 | 3,40 | 4,57 | 2,47 | 3,24 | 4,24 | 2,80 | 3,70 | 4,95 | | FCCOP class | (E) | | | | | | | I | E | | | | | | | Water flow | (3) | l/h | 412 | 539 | 697 | 432 | 585 | 787 | 425 | 558 | 730 | 482 | 637 | 852 | | Water pressure drop | (3)(E) | kPa | 5 | 8 | 13 | 5 | 9 | 15 | 4 | 6 | 10 | 6 | 10 | 17 | | Rated air flow | | m³/h | 331 | 450 | 640 | 320 | 450 | 640 | 420 | 497 | 706 | 361 | 497 | 706 | | Power input | (E) | W | 40 | 50 | 65 | 37 | 61 | 98 | 38 | 61 | 98 | 38 | 61 | 98 | | Total sound power level | (4)(E) | dB(A) | 35 | 43 | 52 | 36 | 44 | 53 | 35 | 43 | 53 | 36 | 44 | 54 | ⁽¹⁾ Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) (3) Water temperature 45°C/40°C, air temperature 20°C (4) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) | ESTRO | | | | 9 | | | 9M | | | 95 | | | 10 | | |---------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | | Total cooling capacity | (1)(E) | kW | 2,95 | 3,59 | 4,41 | 3,47 | 4,30 | 5,30 | 3,37 | 4,12 | 5,15 | 3,88 | 5,14 | 6,53 | | Sensible cooling capacity | (1)(E) | kW | 2,27 | 2,85 | 3,55 | 2,42 | 3,00 | 3,72 | 2,29 | 2,93 | 3,72 | 2,75 | 3,70 | 4,73 | | FCEER class | (E) | | | D | | | D | | | D | | | E | | | Water flow | (2) | I/h | 508 | 618 | 759 | 598 | 740 | 913 | 580 | 709 | 887 | 668 | 885 | 1124 | | Water pressure drop | (2)(E) | kPa | 7 | 10 | 14 | 11 | 16 | 24 | 10 | 14 | 21 | 5 | 9 | 12 | | Heating capacity | (3)(E) | kW | 3,31 | 4,08 | 4,98 | 3,53 | 4,37 | 5,39 | 3,52 | 4,32 | 5,49 | 3,97 | 5,17 | 6,49 | | FCCOP class | (E) | | | | | | | | E | | | | | | | Water flow | (3) | I/h | 570 | 703 | 858 | 608 | 753 | 928 | 606 | 744 | 945 | 684 | 890 | 1118 | | Water pressure drop | (3)(E) | kPa | 7 | 10 | 14 | 10 | 14 | 20 | 8 | 12 | 18 | 4 | 7 | 10 | | Rated air flow | | m³/h | 527 | 605 | 785 | 470 | 605 | 785 | 601 | 615 | 814 | 661 | 771 | 1011 | | Power input | (E) | W | 47 | 68 | 98 | 47 | 68 | 98 | 52 | 73 | 107 | 86 | 127 | 182 | | Total sound power level | (4)(E) | dB(A) | 43 | 49 | 56 | 44 | 50 | 57 | 44 | 51 | 58 | 47 | 54 | 61 | | ESTRO | | | | 10M | | | 11 | | | 11M | | 12 | | | |---------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | | Total cooling capacity | (1)(E) | kW | 4,32 | 5,69 | 7,20 | 4,00 | 6,07 | 7,78 | 4,55 | 6,81 | 8,74 | 6,76 | 8,53 | 10,7 | | Sensible cooling capacity | (1)(E) | kW | 2,98 | 3,93 | 4,99 | 2,94 | 4,46 | 5,72 | 3,18 | 4,78 | 6,15 | 4,91 | 6,22 | 7,76 | | FCEER class | (E) | | | | | | | | Ē | | | | | | | Water flow | (2) | l/h | 744 | 980 | 1240 | 689 | 1045 | 1340 | 784 | 1173 | 1505 | 1164 | 1469 | 1841 | | Water pressure drop | (2)(E) | kPa | 8 | 14 | 21 | 6 | 13 | 20 | 9 | 19 | 29 | 14 | 22 | 32 | | Heating capacity | (3)(E) | kW | 4,28 | 5,56 | 6,96 | 4,39 | 6,53 | 8,37 | 4,75 | 7,02 | 9,00 | 7,45 | 9,29 | 12,2 | | FCCOP class | (E) | | | | | | | | E | | | | | | | Water flow | (3) | l/h | 737 | 957 | 1199 | 756 | 1124 | 1441 | 818 | 1209 | 1550 | 1283 | 1600 | 2101 | | Water pressure drop | (3)(E) | kPa | 7 | 11 | 16 | 6 | 12 | 18 | 8 | 16 | 25 | 14 | 20 | 33 | | Rated air flow | | m³/h | 570 | 771 | 1011 | 682 | 1022 | 1393 | 642 | 1022 | 1393 | 1154 | 1317 | 1850 | | Power input | (E) | W | 86 | 127 | 182 | 109 | 169 | 244 | 109 | 169 | 244 | 210 | 240 | 310 | | Total sound power level | (4)(E) | dB(A) | 48 | 55 | 62 | 49 | 60 | 67 | 50 | 61 | 68 | 60 | 64 | 71 | ⁽¹⁾ Water temperature 7°C/ 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 7°C/ 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) (3) Water temperature 45°C / 40°C, air temperature 20°C (4) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) # **Hydraulic indoor units ESTRO** ### 4 PIPES - RATED TECHNICAL DATA | ESTRO | | | | 1 | | | 2 | | | 3 | | | 4 | | |---------------------------|---------|-------|------|------|------|------|------|------|------|------|------|------|------|-----| | Speed | | | min | med | max | min | med | max | min | med | max | min | med | m | | Total cooling capacity | (1)(E) | kW | 0,74 | 0,88 | 1,10 | 0,97 | 1,11 | 1,42 | 1,22 | 1,44 | 1,64 | 1,24 | 1,52 | 1 | | Sensible cooling capacity | (1)(E) | kW | 0,56 | 0,67 | 0,83 | 0,73 | 0,87 | 1,10 | 0,91 | 1,07 | 1,22 | 0,96 | 1,18 | 1 | | FCEER class | (E) | | | | | | | | E | | | | | | | Water flow | (2) | l/h | 127 | 152 | 189 | 167 | 191 | 245 | 210 | 248 | 282 | 214 | 262 | | | Water pressure drop | (2)(E) | kPa | 4 | 5 | 7 | 6 | 8 | 12 | 8 | 11 | 14 | 7 | 10 | | | Heating capacity | (3)(E) | kW | 1,18 | 1,31 | 1,49 | 1,31 | 1,49 | 1,66 | 1,36 | 1,56 | 1,76 | 1,36 | 1,56 | | | FCCOP class | (E) | | | | | | | ı | E | | | | | | | Water flow | (3) | l/h | 102 | 113 | 128 | 113 | 128 | 143 | 117 | 134 | 152 | 117 | 134 | | | Water pressure drop | (3)(E) | kPa | 2 | 3 | 4 | 3 | 4 | 4 | 4 | 5 | 7 | 4 | 5 | | | Rated air flow | | m³/h | 146 | 184 | 226 | 174 | 225 | 307 | 205 | 261 | 330 | 205 | 261 | | | Power input | (E) | W | 18 | 21 | 32 | 21 | 28 | 37 | 25 | 36 | 53 | 24 | 36 | | | Total sound power level | (4)(E) | dB(A) | 30 | 32 | 40 | 33 | 39 | 45 | 40 | 44 | 49 | 38 | 44 | | | · | 7 7 7 7 | | | | | | | | | | | | | | | ESTRO | | | | | 5 | | | (| | | | 7 | | | | Speed | (4) (5) | 1147 | min | | ed | max | min | m | | max | min | m | | m | | Total cooling capacity | (1)(E) | kW | 1,55 | | 96 | 2,32 | 1,70 | 2,: | | 2,81 | 1,92 | 2, | | 3,: | | Sensible cooling capacity | (1)(E) | kW | 1,14 | | 50 | 1,79 | 1,21 | 1,0 | | 2,01 | 1,40 | 1,9 | | 2, | | FCEER class | (E) | 1.0 | 247 | | E | 400 | 202 |] | | 10.1 | 224 | | | | | Waterflow | (2) | I/h | 267 | | 38 | 400 | 293 | _ | 94 | 484 | 331 | 43 | | 57 | | Water pressure drop | (2)(E) | kPa | 8 | | 2 | 16 | 5 | 3 | | 11 | 4 | 7 | | 1 | | Heating capacity | (3)(E) | kW | 1,78 | 2, | 18 | 2,53 | 1,88 | 2,: | | 2,68 | 2,82 | 3, | 4/ | 4,2 | | FCCOP class | (E) | | | | | | | | E | | | | _ | | | Water flow | (3) | l/h | 153 | | 38 | 218 | 162 | 19 | | 231 | 243 | 29 | | 36 | | Water pressure drop | (3)(E) | kPa | 2 | | 3 | 3 | 2 | 3 | | 4 | 8 | 1 | | 1 | | Rated air flow | | m³/h | 238 | | 34 | 432 | 237 | _ | 32 | 431 | 316 | 44 | | 62 | | Power input | (E) | W | 29 | | 4 | 57 | 29 | | 3 | 56 | 37 | 6 | | 9 | | Total sound power level | (4)(E) | dB(A) | 34 | 4 | 3 | 48 | 33 | 4 | 1 | 47 | 36 | 4 | 5 | 5 | | ESTRO | | | | - | 8 | | | 9 |) | | | 9 | 5 | | | Speed | | | min | m | ed | max | min | m | ed | max | min | m | ed | ma | | Total cooling capacity | (1)(E) | kW | 2,44 | 3, | 17 | 4,16 | 3,06 | 3, | 74 | 4,57 | 3,49 | 4,2 | 27 | 5,3 | | Sensible cooling capacity | (1)(E) | kW | 1,74 | 2, | 36 | 2,99 | 2,23 | 2, | 80 | 3,47 | 2,38 | 3,0 | 01 | 3, | | FCEER class | (E) | | | | | | | [|) | | | | | | | Water flow | (2) | l/h | 420 | 54 | 46 | 716 | 527 | 64 | 14 | 787 | 601 | 73 | 35 | 91 | | Water pressure drop | (2)(E) | kPa | 5 | | 7 | 12 | 7 | 1 | 0 | 14 | 10 | 1 | 4 | 2 | | FCCOP class | (E) | | | | | | | | E | | | | | | | Heating capacity | (3)(E) | kW | 2,73 | 3, | 22 | 3,82 | 3,55 | 4,0 | 07 | 4,64 | 3,70 | 4,2 | 20 | 4,8 | | Water flow | (3) | l/h | 235 | 27 | 77 | 329 | 306 | 35 | 50 | 400 | 319 | 36 | 52 | 41 | | Water pressure drop | (3)(E) | kPa | 8 | 1 | 0 | 14 | 5 | (| 5 | 8 | 7 | 9 |) | 1 | | Rated air flow | | m³/h | 356 | 49 | 90 | 690 | 460 | 59 | | 763 | 478 | 60 |)3 | 79 | | Power input | (E) | W | 38 | 6 | i1 | 98 | 47 | 6 | 8 | 98 | 52 | 7 | 3 | 1(| | Total sound power level | (4)(E) | dB(A) | 39 | 4 | 6 | 56 | 48 | 5 | 3 | 58 | 46 | 5 | 2 | 5 | | rctpo. | | | | 1 | ^ | | | 1 | 1 | | | 1 | 2 | | | ESTRO | | | | | 0 | | , | 1 | | | , | 1 | | | | Speed | (4) (5) | 1147 | min | m | | max | min | m | | max | min | m | | m | | Total cooling capacity | (1)(E) | kW | 3,84 | | 10 | 6,46 | 3,96 | 5,9 | | 7,64 | 6,70 | 8, | | 10 | | Sensible cooling capacity | (1)(E) | kW | 2,73 | 3, | 67 | 4,67 | 2,91 | 4, | | 5,61 | 4,86 | 6, | 15 | 7, | | FCEER class | (E) | | | | | | | | E | | | | | | | Water flow | (2) | l/h | 661 | | 78 | 1112 | 682 | 10 | | 1316 | 1154 | 14 | | 18 | | Water pressure drop | (2)(E) | kPa | 5 | | 8 | 12 | 5 | 1 | 0 | 16 | 14 | 2 | 1 | 3 | (E) (3)(E) (3) (3)(E)
(E) (4)(E) kW I/h kPa m³/h W dB(A) FC-44 (E) EUROVENT certified data www.galletti.com GAPCBX251A 5,02 432 14 565 86 6,02 518 19 765 127 54 6,97 600 24 998 182 4,85 418 14 636 109 48 6,29 542 22 1007 169 58 7,35 633 29 1362 244 66 6,93 597 24 999 210 63 8,01 690 31 1300 240 64 9,52 820 42 1814 310 71 FCCOP class Water flow Rated air flow Power input Heating capacity Water pressure drop Total sound power level Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) Water temperature 65°C / 55°C, air temperature 20°C Sound power measured according to standards ISO 3741 and ISO 3742 # ESTRO FL - CL ### LEGEND | 1 | Usable space for plumbing connections | |-----|--| | 2 | Slots for installation on the wall | | 3 | Usable space for electrical connections | | 4 | Standard heat exchanger water connections | | 4DF | DF 1-row additional heat exchanger water connections | | 5 | Condensate drainage | | ESTRO | 1 | 2 | 3 | 4 | 4M | 5 | 6 | 6M | 7 | 7M | 8 | 8M | 9 | 9M | 95 | 10 | 10M | 11 | 11M | 12 | |-------------------------------------|---|---|---|---|----|---|---|----|---|----|---|----|---|----|----|----|-----|----|-----|----| | ON/OFF motor (3 speed) | Х | Х | Х | Х | х | Х | Х | Х | Х | х | Х | х | Х | Х | X | Х | х | х | х | х | | ON/OFF motor (6 speed) | Х | - | Х | Х | х | Х | Х | Х | Х | х | Х | х | х | Х | Х | - | - | - | - | - | | Inverter-controlled motor | Х | - | Х | Х | Х | Х | Х | Х | Х | - | Х | - | Х | Х | Х | - | - | х | х | - | | GreenTech inverter-controlled motor | Х | - | Х | Х | х | Х | Х | х | Х | - | Х | - | Х | Х | - | - | - | - | - | - | | ESTRO | A | В | C | D | E | F | G | Н | L | М | N | P | R | 4 | 4DF | 5 | A | |--------------------------|------|-----|------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----| | LJINU | mm | | mm | kg | | 1 - 2 - 3 - 4 - 4M | 774 | 226 | 498 | 51 | 458 | 163 | 263 | 149 | 198 | 187 | 335 | 99 | 486 | 1/2 | 1/2 | 16 | 21 | | 5 - 6 - 6M | 984 | 226 | 708 | 51 | 458 | 163 | 263 | 149 | 198 | 187 | 335 | 99 | 486 | 1/2 | 1/2 | 16 | 27 | | 7 - 7M - 8 - 8M - 9 - 9M | 1194 | 226 | 918 | 51 | 458 | 163 | 263 | 149 | 198 | 187 | 335 | 99 | 486 | 1/2 | 1/2 | 16 | 33 | | 95 | 1194 | 251 | 918 | 48 | 497 | 185 | 259 | 155 | 220 | 195 | 348 | 120 | 478 | 3/4 | 1/2 | 16 | 34 | | 10 - 10M - 11 - 11M | 1404 | 251 | 1128 | 48 | 497 | 185 | 259 | 155 | 220 | 195 | 348 | 120 | 478 | 3/4 | 1/2 | 16 | 43 | | 12 | 1614 | 251 | 1338 | 48 | 497 | 185 | 259 | 155 | 220 | 195 | 348 | 120 | 478 | 3/4 | 1/2 | 16 | 53 | # **Hydraulic indoor units ESTRO** ## **DIMENSIONAL DRAWINGS** # ESTRO FU ### LEGEND | Usable space for plumbing connections Slots for installation on the wall | |---| | | | Hankla ann an fau alastuisal sannastians | | Usable space for electrical connections | | Standard heat exchanger water connections | | DF 1-row DF additional heat exchanger water connections | | Condensate drainage vertical installation | | Condensate drainage horizontal installation | | | | ESTRO FU | 1 | 2 | 3 | 4 | 4M | 5 | 6 | 6M | 7 | 7M | 8 | 8M | 9 | 9M | 95 | 10 | 10M | 11 | 11M | 12 | |-------------------------------------|---|---|---|---|----|---|---|----|---|----|---|----|---|----|----|----|-----|----|-----|----| | ON/OFF motor (3 speed) | Х | Х | Х | Х | х | Х | Х | Х | Х | Х | Х | х | Х | Х | Х | Х | Х | Х | Х | х | | ON/OFF motor (6 speed) | Х | - | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | - | - | - | - | - | | Inverter-controlled motor | Х | - | Х | Х | Х | Х | Х | Х | Х | - | Х | - | Х | Х | Х | - | - | Х | х | - | | GreenTech inverter-controlled motor | Х | - | Х | Х | Х | Х | Х | Х | Х | - | Х | - | Х | Х | - | - | - | - | - | - | | ESTRO FU | A | В | C | D | E | F | G | Н | L | M | N | P | R | S | T | Z | 4 | ALC: | |--------------------------|------|-----|------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------| | LSINOTO | mm | kg | | 1 - 2 - 3 - 4 - 4M | 774 | 226 | 498 | 51 | 458 | 163 | 263 | 149 | 198 | 187 | 335 | 99 | 486 | 208 | 198 | 246 | 1/2 | 22 | | 5 - 6 - 6M | 984 | 226 | 708 | 51 | 458 | 163 | 263 | 149 | 198 | 187 | 335 | 99 | 486 | 208 | 198 | 246 | 1/2 | 29 | | 7 - 7M - 8 - 8M - 9 - 9M | 1194 | 226 | 918 | 51 | 458 | 163 | 263 | 149 | 198 | 187 | 335 | 99 | 486 | 208 | 198 | 246 | 1/2 | 35 | | 95 | 1194 | 251 | 918 | 48 | 497 | 185 | 259 | 155 | 220 | 195 | 348 | 120 | 478 | 234 | 208 | 271 | 3/4 | 36 | | 10 - 10M - 11 - 11M | 1404 | 251 | 1128 | 48 | 497 | 185 | 259 | 155 | 220 | 195 | 348 | 120 | 478 | 234 | 208 | 271 | 3/4 | 45 | | 12 | 1614 | 251 | 1338 | 48 | 497 | 185 | 259 | 155 | 220 | 195 | 348 | 120 | 478 | 234 | 208 | 271 | 3/4 | 55 | ESTRO FP # **Hydraulic indoor units ESTRO** # DIMENSIONAL DRAWINGS ### LEGEND | LLGLIA | U | |--------|---| | 1 | Usable space for plumbing connections | | 2 | Slots for installation on the wall | | 3 | Usable space for electrical connections | | 4 | Standard heat exchanger water connections | | 4DF | DF 1-row DF additional heat exchanger water connections | | 5 | Condensate drainage | | ESTRO FP | 1 | 2 | 3 | 4 | 4M | 5 | 6 | 6M | 7 | 7M | 8 | 8M | 9 | 9M | 95 | 10 | 10M | 11 | 11M | 12 | |-------------------------------------|---|---|---|---|----|---|---|----|---|----|---|----|---|----|----|----|-----|----|-----|----| | ON/OFF motor (3 speed) | Х | X | Х | Х | х | Х | Х | Х | Х | х | Х | х | Х | Х | X | Х | х | Х | х | Х | | ON/OFF motor (6 speed) | Х | - | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | - | - | - | - | - | | Inverter-controlled motor | Х | - | Х | Х | Х | Х | Х | Х | Х | - | Х | - | Х | Х | Х | - | - | Х | х | - | | GreenTech inverter-controlled motor | х | - | х | Х | Х | х | Х | Х | Х | - | Х | - | Х | Х | - | - | - | - | - | - | | ESTRO | A | В | C | D | E | F | G | M | N | P | R | S | T | 4 | 4DF | 5 | 85 | |--------------------------|------|-----|------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----| | EJINU | mm | | mm | kg | | 1 - 2 - 3 - 4 - 4M | 774 | 226 | 498 | 51 | 458 | 163 | 263 | 187 | 335 | 99 | 486 | 208 | 198 | 1/2 | 1/2 | 16 | 22 | | 5 - 6 - 6M | 984 | 226 | 708 | 51 | 458 | 163 | 263 | 187 | 335 | 99 | 486 | 208 | 198 | 1/2 | 1/2 | 16 | 29 | | 7 - 7M - 8 - 8M - 9 - 9M | 1194 | 226 | 918 | 51 | 458 | 163 | 263 | 187 | 335 | 99 | 486 | 208 | 198 | 1/2 | 1/2 | 16 | 35 | | 95 | 1194 | 251 | 918 | 48 | 497 | 185 | 259 | 195 | 348 | 120 | 478 | 234 | 208 | 3/4 | 1/2 | 16 | 36 | | 10 - 10M - 11 - 11M | 1404 | 251 | 1128 | 48 | 497 | 185 | 259 | 195 | 348 | 120 | 478 | 234 | 208 | 3/4 | 1/2 | 16 | 45 | | 12 | 1614 | 251 | 1338 | 48 | 497 | 185 | 259 | 195 | 348 | 120 | 478 | 234 | 208 | 3/4 | 1/2 | 16 | 55 | # ESTRO FC | LEGEN | D | |-------|---| | 2 | Slots for installation on the wall | | 4 | Standard heat exchanger water connections | | 4DF | DF 1-row DF additional heat exchanger water connections | | 5 | Condensate drainage vertical installation | | 6 | Air outlet | | 7 | Air intake | | R | Condensate drainage horizontal installation | | ESTRO FC | 1 | 2 | 3 | 4 | 4M | 5 | 6 | 6M | 7 | 7M | 8 | 8M | 9 | 9M | 95 | 10 | 10M | 11 | 11M | 12 | |-------------------------------------|---|---|---|---|----|---|---|----|---|----|---|----|---|----|----|----|-----|----|-----|----| | ON/OFF motor (3 speed) | Х | Х | X | Х | Х | Х | Х | Х | Х | х | Х | Х | Х | Х | Х | Х | х | Х | х | х | | ON/OFF motor (6 speed) | Х | - | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | - | - | - | - | - | | Inverter-controlled motor | Х | - | Х | Х | Х | Х | Х | Х | Х | - | Х | - | Х | Х | Х | - | - | Х | х | Х | | GreenTech inverter-controlled motor | Х | - | Х | х | х | Х | Х | Х | х | - | х | - | х | Х | - | - | - | - | - | Х | | ESTRO | A | В | C | D | E | F | G | Н | L | M | N | P | Q | R | S | T | U | V | Y | 4 | â | |--------------------------|------|-----|------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|----|-----|----| | LJINO | mm | kg | | 1 - 2 - 3 - 4 - 4M | 584 | 224 | 498 | 51 | 458 | 163 | 263 | 149 | 198 | 187 | 335 | 99 | 189 | 486 | 208 | 198 | 436 | 464 | 61 | 1/2 | 18 | | 5 - 6 - 6M | 794 | 224 | 708 | 51 | 458 | 163 | 263 | 149 | 198 | 187 | 335 | 99 | 189 | 486 | 208 | 198 | 646 | 674 | 61 | 1/2 | 23 | | 7 - 7M - 8 - 8M - 9 - 9M | 1004 | 224 | 918 | 51 | 458 | 163 | 263 | 149 | 198 | 187 | 335 | 99 | 189 | 486 | 208 | 198 | 856 | 884 | 61 | 1/2 | 27 | | 95 | 1004 | 249 | 918 | 48 | 497 | 185 | 259 | 155 | 220 | 195 | 348 | 120 | 215 | 478 | 234 | 208 | 856 | 884 | 67 | 3/4 | 27 | | 10 - 10M - 11 - 11M | 1214 | 249 | 1128 | 48 | 497 | 185 | 259 | 155 | 220 | 195 | 348 | 120 | 215 | 478 | 234 | 208 | 1066 | 1094 | 67 | 3/4 | 37 | | 12 | 1424 | 249 | 1338 | 48 | 497 | 185 | 259 | 155 | 220 | 195 | 348 | 120 | 215 | 478 | 234 | 208 | 1276 | 1304 | 67 | 3/4 | 43 | # **Hydraulic indoor units ESTRO** # DIMENSIONAL DRAWINGS |--| | 2 | Slots for installation on the wall | |-----|---| | 4 | Standard heat exchanger water connections | | 4DF | DF 1-row DF additional heat exchanger water connections | | 5 | Condensate drainage vertical installation | | 6 | Air outlet | | 7 | Air intake | | 8 | Condensate drainage horizontal installation | | ESTRO FF | 1 | 2 | 3 | 4 | 4M | 5 | 6 | 6M | 7 | 7M | 8 | 8M | 9 | 9M | 95 | 10 | 10M | 11 | 11M | 12 | |-------------------------------------|---|---|---|---|----|---|---|----|---|----|---|----|---|----|----|----|-----|----|-----|----| | ON/OFF motor (3 speed) | Х | Х | Х | Х | х | Х | Х | Х | Х | х | Х | х
 Х | Х | X | Х | х | Х | х | X | | ON/OFF motor (6 speed) | Х | - | Х | Х | Х | Х | Х | Х | Х | Х | Х | х | Х | Х | Х | - | - | - | - | - | | Inverter-controlled motor | Х | - | Х | Х | Х | Х | Х | Х | Х | - | Х | - | Х | Х | - | - | - | х | Х | - | | GreenTech inverter-controlled motor | Х | - | Х | Х | х | Х | Х | х | Х | - | Х | - | Х | х | - | - | - | - | - | - | | ESTRO | A | В | C | D | E | F | G | Н | L | M | N | P | Q | R | S | T | U | V | W | 4 | å | |--------------------------|------|-----|------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|----|-----|----| | LJINO | mm | kg | | 1 - 2 - 3 - 4 - 4M | 584 | 224 | 498 | 51 | 458 | 163 | 263 | 149 | 198 | 187 | 335 | 99 | 189 | 486 | 208 | 198 | 436 | 464 | 61 | 1/2 | 18 | | 5 - 6 - 6M | 794 | 224 | 708 | 51 | 458 | 163 | 263 | 149 | 198 | 187 | 335 | 99 | 189 | 486 | 208 | 198 | 646 | 674 | 61 | 1/2 | 23 | | 7 - 7M - 8 - 8M - 9 - 9M | 1004 | 224 | 918 | 51 | 458 | 163 | 263 | 149 | 198 | 187 | 335 | 99 | 189 | 486 | 208 | 198 | 856 | 884 | 61 | 1/2 | 27 | | 95 | 1004 | 249 | 918 | 48 | 497 | 185 | 259 | 155 | 220 | 195 | 348 | 120 | 215 | 478 | 234 | 208 | 856 | 884 | 67 | 3/4 | 27 | | 10 - 10M - 11 - 11M | 1214 | 249 | 1128 | 48 | 497 | 185 | 259 | 155 | 220 | 195 | 348 | 120 | 215 | 478 | 234 | 208 | 1066 | 1094 | 67 | 3/4 | 37 | | 12 | 1424 | 249 | 1338 | 48 | 497 | 185 | 259 | 155 | 220 | 195 | 348 | 120 | 215 | 478 | 234 | 208 | 1276 | 1304 | 67 | 3/4 | 43 | ### ESTRO FB 251 38 2 OUT 1 370 227 35 211 271 ESTRO FB 2 4 5 8 ON/OFF motor (3 speed) ON/OFF motor (6 speed) Inverter-controlled motor Х X Х X X X Х X LEGEND x = available1 Usable space for plumbing connections c 5 NG 2 Slots for installation on the wall **ESTRO** kg mm mm mm 3 Usable space for electrical connections 1-2-3-4 1/2 498 774 16 19 Standard heat exchanger water connections 4 5-6 984 708 1/2 16 28 # Fan coil units with centrifugal fan and EC motor # **ESTRO i 1 - 9 kW** installation Centrifugal installation # Energy savings and comfort in a single solution The continual innovation that characterizes the design of ESTRO has resulted in fan assemblies with invertercontrolled permanent magnet EC motors. The use of this type of motor makes it possible to achieve a major reduction in power consumption, better perceived comfort in terms of temperature and hu Analyses and verifications have shown a reduction in consumption of no less than 70% with integrated operation compared to traditional AC motors, with a corresponding reduction in CO₂ emissions. The DC Inverter technology allows to continuously adjust the air flow to the actual needs of the environment by considerably reducing the fluctuations in room temperature that are typical of step-by-step adjustments. The continuous modulation of air flow brings about an adjustment in the delivered heating capacity, so that the interior is brought quickly to the set conditions and the noise levels are exceptionally low while they are being maintained. ESTRO i fan coil units MYCOMFORT LARGE and EVO microprocessor control panels, which, thanks to the analogue outputs and refined adjustment logics, perfectly control the operation of the EC motors and modulating valves. # **PLUS** - » Inverter-controlled EC motor - » Low energy consumption - » Modulating operation - » Extremely quiet operation - » Heat exchanger up to 4 rows ### **AVAILABLE VERSIONS** **ESTRO FLi** Wall mounted with cabinet **ESTRO FA i** Wall recess mounted with cabinet **ESTRO CLi** Wall mounted with cabinet ESTRO FU i Floor and ceiling mounted with cabinet **ESTRO FPi** Ceiling mounted with cabinet **ESTRO FB i** Floor and ceiling mounted with low cabinet **ESTRO FC i** Vertical / horizontal recess mounted with rear air intake ESTRO FF i Vertical / horizontal recess mounted with front air **ESTRO FBC i** Vertical / horizontal recess mounted with low cab- inet and front air intake ## MAIN COMPONENTS ### **Cabinet** Composed of a painted steel sheet panel, side panels, air outlet grille (swinging by 180°) and back suction grille built from ABS. ### **Structure** Built from galvanised steel sheet of extra thickness, heat and sound insulated by means of Class 1 self-extinguishing panels. FUi – FBi – FCi – FFi and FBCi versions are suitable for either vertical or horizontal installation thanks to the dual condensate collection and drainage system. ### **Heat exchanger** High efficiency heat exchanger made with copper piping and aluminium fins, provided with brass manifolds and vent valve. The water connections are reversible at the time of installation. On request it is possible to mount an additional heat exchanger for 4-pipe systems. ### **Fans** Double suction centrifugal fans, statically and dynamically balanced, manufactured from anti-static ABS, with blades having an airfoil section and offset modules. The fans are housed in a low-noise ABS volute with high-efficiency profile. ### **EC** electric motor Permanent magnet motor The unit is equipped with an inverter board to control the motor, that makes it possible to precisely set the maximum rotation speed of the motor (control signal 0-10 V). ### Air filter Honey-comb polypropylene washable air filter, easily removable for maintenance operations. On FUi and FBi versions the air filters are fitted onto the air inlet grille. | ACCES: | SORIFS | |-----------------|---| | | roprocessor control panels with display | | DIST | MY COMFORT controller spacer for wall mounting | | EVO-2-TOUCH | 2.8" touch screen user interface for EVO control | | EVOBOARD | Circuit board for EVO control | | EVODISP | User interface with display for EVO controller | | EYNAVEL | Device for Wi-Fi or Bluetooth communication between EVOBOARD and smartphone | | KBE | MY COMFORT on-board installation kit | | MCLE | Microprocessor control with display MY COMFORT LARGE | | MCSUE | Humidity sensor for MY COMFORT (medium e large), EVO | | MCSWE | Water sensor for MYCOMFORT and EVO controllers | | Electronic mici | roprocessor control panels | | KB A | On-board ESTRO FA installation kit suitable for TED controller | | KB L DX | On-board ESTRO FL/FU/FB installation kit on the right side suitable for TED controlle | | KB L SX | On-board ESTRO FL/FU/FB installation kit on the left side suitable for TED controller | | TED 10 | Electronic controller for EC fan equipped with inverter and ON/OFF valves 230 V | | TED SWA | Water temperature sensor for TED controls | | Power interfac | e and regulating louver controllers | | CSB | On-board controller for opening and closing the motor-driven regulating louver | | CSD | Recess mounted controller for opening and closing the SM motor-driven regulating louver | | Additional hea | t exchanger for 4-pipe systems | | DF | 1-row additional heat exchanger for 4-pipe systems (not suitable for ESTRO "M" models) | | Auxiliary wate | r drip trays, insulating shell, condensate drainage pump | | BH | Auxiliary water drip tray for horizontal installation fan coil units | | BV | Auxiliary water drip tray for vertical installation fan coil units | | GIVKL | Insulating shell for VKS valve, water connections on the left | | GIVKR | Insulating shell for VKS valve, water connections on the right | | KSC | Condensate drainage pump kit | | Base and enclo | osure elements | | ZA | Pair of support covering elements with front grille for ESTRO FA | | ZAG | Pair of support covering elements for ESTRO FA | | ZC | Pair of support covering elements for ESTRO CL | | ZCG | Pair of support covering elements for ESTRO CL | |---------------|--| | ZL | Pair of support covering elements for ESTRO FL | | ZLG | Pair of support covering elements with front grille for ESTRO FL | | Rear coveri | ng panels | | PH | Rear painted panel for horizontal installation with cabinet | | PV | Rear painted panel for vertical installation with cabinet | | Air inlet and | d outlet grilles | | GE | Aluminium external air intake grille with subframe | | GEF | Aluminium external air intake grille with subframe and air filter | | GM | Aluminium air outlet grille with 2-row fins and subframe | | RGC | Plenum with circular collars for air outlet grille | | Plenum and | l connectors | | RA90 | Angular inlet connector | | RAD | Straight inlet connector | | RADC | Air inlet plenum with circular collars | | RM90 | Angular outlet connector | | RM90C | Angular outlet insulated connector | | RMCD | Straight outlet insulated connector | | RMCD C | Air outlet plenum with circular collars | | RMD | Straight outlet connector | | External air | intake louvers | | SM | Motor-driven louver, with motor on the right with transformer | | SM | Motor-driven louver, with motor on the left with transformer | | SM | Motorized air intake louver | | SMC | Motor driven louver, with motor on the right, with transformer | | SMC | Motor driven louver, with motor on the left, with transformer | | Valves | | | KV | 2-way valve, ON/OFF actuator, hydraulic kit on water connection side for main heat
exchanger | | KVM | 2-way valve, MODULATING actuator, 24 V power supply, hydraulic kit on water connec-
tion side for main heat exchanger | | VPIC | 2-way valves pressure independent, ON/OFF or MODULATING actuator, 230 V or 24 V power supply, hydraulic kit, for main heat exchanger | | ESTRO i | | | | 1 | | | 3 | | | 4 | | | 4M | | |---------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | | Control voltage | (E) | ٧ | 4,00 | 5,30 | 6,50 | 5,20 | 6,90 | 8,40 | 5,20 | 6,90 | 8,40 | 5,20 | 6,90 | 8,40 | | Total cooling capacity | (1)(E) | kW | 0,77 | 0,91 | 1,14 | 1,25 | 1,51 | 1,72 | 1,35 | 1,69 | 1,94 | 1,49 | 1,84 | 2,22 | | Sensible cooling capacity |
(1)(E) | kW | 0,59 | 0,69 | 0,86 | 0,94 | 1,13 | 1,28 | 1,04 | 1,30 | 1,49 | 1,05 | 1,31 | 1,58 | | FCEER class | (E) | | | | | | | | В | | | | | | | Water flow | (2) | l/h | 133 | 157 | 196 | 215 | 260 | 296 | 232 | 291 | 334 | 257 | 317 | 382 | | Water pressure drop | (2)(E) | kPa | 4 | 5 | 7 | 8 | 11 | 14 | 7 | 10 | 13 | 10 | 14 | 20 | | Heating capacity | (3)(E) | kW | 0,95 | 1,11 | 1,32 | 1,45 | 1,72 | 1,84 | 1,50 | 1,81 | 2,15 | 1,53 | 1,88 | 2,29 | | FCCOP class | (E) | | | C | | | В | | | В | | | C | | | Waterflow | (3) | l/h | 164 | 191 | 227 | 250 | 296 | 317 | 258 | 312 | 370 | 263 | 324 | 394 | | Water pressure drop | (3)(E) | kPa | 5 | 6 | 8 | 9 | 12 | 14 | 6 | 9 | 12 | 9 | 12 | 17 | | Rated air flow | | m³/h | 149 | 189 | 231 | 211 | 271 | 344 | 211 | 271 | 344 | 211 | 271 | 344 | | Power input | (E) | W | 6 | 8 | 9 | 7 | 9 | 19 | 7 | 9 | 19 | 9 | 12 | 24 | | Total sound power level | (4)(E) | dB(A) | 30 | 32 | 40 | 38 | 44 | 49 | 40 | 44 | 50 | 41 | 45 | 51 | | ESTRO i | | | | 5 | | | 6 | | | 6M | | | 7 | | | Speed | | | min | med | max | | Control voltage | (E) | ٧ | 3,80 | 5,70 | 7,30 | 3,80 | 5,70 | 7,30 | 3,80 | 5,70 | 7,30 | 3,60 | 5,40 | 8,00 | | Total cooling capacity | (1)(E) | kW | 1,59 | 2,02 | 2,40 | 1,75 | 2,37 | 2,91 | 1,92 | 2,63 | 3,27 | 1,97 | 2,62 | 3,49 | | Sensible cooling capacity | (1)(E) | kW | 1,17 | 1,56 | 1,86 | 1,25 | 1,69 | 2,09 | 1,32 | 1,82 | 2,28 | 1,44 | 2,03 | 2,73 | | FCEER class | (E) | | | Α | - | | Α | - | | A | | | C | - | | Water flow | (2) | l/h | 274 | 348 | 413 | 301 | 408 | 501 | 331 | 453 | 563 | 339 | 451 | 601 | | Water pressure drop | (2)(E) | kPa | 8 | 12 | 16 | 5 | 8 | 11 | 7 | 12 | 17 | 4 | 7 | 12 | | Heating capacity | (3)(E) | kW | 1,74 | 2,26 | 2,70 | 1,76 | 2,37 | 2,94 | 1,74 | 2,41 | 3,03 | 2,39 | 3,13 | 4,05 | | FCCOP class | (E) | | | Α | | | Α | | | В | | | C | | | Water flow | (3) | l/h | 300 | 389 | 465 | 303 | 408 | 506 | 300 | 415 | 522 | 412 | 539 | 697 | | Water pressure drop | (3)(E) | kPa | 8 | 12 | 17 | 5 | 8 | 11 | 6 | 10 | 15 | 5 | 8 | 13 | | Rated air flow | | m³/h | 241 | 341 | 442 | 241 | 341 | 442 | 241 | 341 | 442 | 320 | 450 | 640 | | Power input | (E) | W | 6 | 8 | 16 | 8 | 10 | 20 | 6 | 8 | 16 | 10 | 17 | 34 | | Total sound power level | (4)(E) | dB(A) | 35 | 43 | 48 | 36 | 42 | 48 | 35 | 43 | 49 | 35 | 46 | 52 | | ESTRO i | | | | 8 | | | 9 | | | 9M | | | 95 | | | Speed | | | min | med | max | | Control voltage | (E) | ٧ | 3,70 | 5,40 | 8,00 | 5,00 | 6,70 | 8,90 | 5,00 | 6,70 | 8,90 | 4,80 | 6,10 | 8,30 | | Total cooling capacity | (1)(E) | kW | 2,50 | 3,26 | 4,30 | 2,99 | 3,64 | 4,48 | 3,51 | 4,35 | 5,37 | 3,41 | 4,17 | 5,22 | | Sensible cooling capacity | (1)(E) | kW | 1,79 | 2,44 | 3,12 | 2,31 | 2,90 | 3,62 | 2,46 | 3,05 | 3,79 | 2,47 | 3,11 | 3,95 | | FCEER class | (E) | | | Α | | | В | | | Α | | | Α | | | Water flow | (2) | I/h | 430 | 561 | 740 | 515 | 627 | 771 | 604 | 749 | 925 | 587 | 718 | 899 | | Water pressure drop | (2)(E) | kPa | 6 | 10 | 15 | 7 | 10 | 14 | 11 | 16 | 24 | 10 | 14 | 21 | | Heating capacity | (3)(E) | kW | 2,47 | 3,24 | 4,24 | 3,36 | 4,11 | 4,88 | 3,53 | 4,37 | 5,39 | 3,52 | 4,32 | 5,49 | | FCCOP class | (E) | | | | | | | | В | | | | | | | Water flow | (3) | I/h | 425 | 558 | 730 | 579 | 708 | 840 | 608 | 753 | 928 | 606 | 744 | 945 | | | | | | | | | | | | | | | | | kPa m³/h W dB(A) (3)(E) (E) (4)(E) Water pressure drop Total sound power level Rated air flow Power input Power supply 230-1-50 (V-ph-Hz) NOTE: The dimensional drawings of the ESTRO i inverter units are the same of the ESTRO ON/OFF version. They are reported from page 45 inverted to the property of the extra contract co Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) Water temperature 45°C / 40°C, air temperature 20°C Sound power measured according to standards ISO 3741 and ISO 3742 EUROVENT certified data | ESTRO i | | | | 11 | | | 11M | | |---------------------------|--------|-------|------|------|------|------|------|------| | Speed | | | min | med | max | min | med | max | | Control voltage | (E) | ٧ | 3,60 | 6,20 | 8,60 | 3,60 | 6,20 | 8,60 | | Total cooling capacity | (1)(E) | kW | 4,11 | 6,24 | 8,02 | 4,65 | 6,94 | 8,89 | | Sensible cooling capacity | (1)(E) | kW | 3,05 | 4,63 | 5,96 | 3,28 | 4,91 | 6,30 | | FCEER class | (E) | | | В | | | Α | | | Water flow | (2) | l/h | 708 | 1075 | 1381 | 801 | 1195 | 1531 | | Water pressure drop | (2)(E) | kPa | 6 | 13 | 20 | 9 | 19 | 29 | | Heating capacity | (3)(E) | kW | 4,39 | 6,53 | 8,37 | 4,75 | 7,02 | 9,00 | | FCCOP class | (E) | | | | E | 3 | | | | Water flow | (3) | I/h | 756 | 1124 | 1441 | 818 | 1209 | 1550 | | Water pressure drop | (3)(E) | kPa | 6 | 12 | 18 | 8 | 16 | 25 | | Rated air flow | | m³/h | 642 | 1022 | 1393 | 642 | 1022 | 1393 | | Power input | (E) | W | 17 | 50 | 114 | 13 | 38 | 87 | | Total sound power level | (4)(E) | dB(A) | 49 | 60 | 67 | 50 | 61 | 68 | ⁽¹⁾ Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) (3) Water temperature 45°C / 40°C, air temperature 20°C (4) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) # Fan coil ESTRO i # 4 PIPES - RATED TECHNICAL DATA | ESTRO i | | | | - 1 | | | 3 | | | 4 | | | 5 | | |---------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | | Control voltage | (E) | ٧ | 4,00 | 5,30 | 6,50 | 5,10 | 6,60 | 8,10 | 5,10 | 6,60 | 8,10 | 3,70 | 5,50 | 7,20 | | Total cooling capacity | (1)(E) | kW | 0,75 | 0,89 | 1,12 | 1,23 | 1,47 | 1,67 | 1,25 | 1,55 | 1,77 | 1,57 | 1,99 | 2,37 | | Sensible cooling capacity | (1)(E) | kW | 0,57 | 0,68 | 0,85 | 0,92 | 1,10 | 1,25 | 0,97 | 1,21 | 1,44 | 1,16 | 1,53 | 1,84 | | FCEER class | (E) | | | C | | | В | | | В | | | Α | | | Water flow | (2) | l/h | 129 | 153 | 193 | 212 | 253 | 288 | 215 | 267 | 305 | 270 | 343 | 408 | | Water pressure drop | (2)(E) | kPa | 4 | 5 | 7 | 8 | 11 | 14 | 7 | 10 | 13 | 8 | 12 | 16 | | Heating capacity | (3)(E) | kW | 1,18 | 1,31 | 1,49 | 1,36 | 1,56 | 1,76 | 1,36 | 1,56 | 1,76 | 1,78 | 2,18 | 2,53 | | FCCOP class | (E) | | | В | | | В | | | В | | | В | | | Water flow | (3) | l/h | 102 | 113 | 128 | 117 | 134 | 152 | 117 | 134 | 152 | 153 | 188 | 218 | | Water pressure drop | (3)(E) | kPa | 2 | 3 | 4 | 4 | 5 | 7 | 4 | 5 | 6 | 2 | 3 | 3 | | Rated air flow | | m³/h | 146 | 184 | 226 | 205 | 261 | 330 | 205 | 261 | 327 | 238 | 334 | 432 | | Power input | (E) | W | 7 | 8 | 9 | 7 | 8 | 18 | 7 | 8 | 18 | 8 | 10 | 19 | | Total sound power level | (4)(E) | dB(A) | 29 | 32 | 40 | 40 | 44 | 49 | 38 | 44 | 50 | 34 | 43 | 48 | | ESTRO i | | | | 6 | | | 7 | | | 8 | | |---------------------------|--------|-------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | min | med | max | min | med | max | | Control voltage | (E) | ٧ | 3,80 | 5,70 | 7,30 | 3,60 | 5,40 | 8,00 | 3,70 | 5,40 | 8,00 | | Total cooling capacity | (1)(E) | kW | 1,72 | 2,32 | 2,86 | 1,95 | 2,59 | 3,44 | 2,47 | 3,22 | 4,24 | | Sensible cooling capacity | (1)(E) | kW | 1,23 | 1,65 | 2,06 | 1,43 | 2,01 | 2,69 | 1,77 | 2,41 | 3,07 | | FCEER class | (E) | | | | | | Α | | | | | | Water flow | (2) | l/h | 296 | 400 | 492 | 336 | 446 | 592 | 425 | 554 | 730 | | Water pressure drop | (2)(E) | kPa | 5 | 8 | 11 | 4 | 7 | 12 | 5 | 7 | 12 | | Heating capacity | (3)(E) | kW | 1,88 | 2,31 | 2,68 | 2,82 | 3,47 | 4,20 | 2,73 | 3,22 | 3,82 | | FCCOP class | (E) | | | В | | | В | | | Α | | | Water flow | (3) | I/h | 162 | 199 | 231 | 243 | 299 | 362 | 235 | 277 | 329 | | Water pressure drop | (3)(E) | kPa | 2 | 3 | 4 | 8 | 12 | 16 | 8 | 10 | 14 | | Rated air flow | | m³/h | 237 | 332 | 431 | 316 | 444 | 628 | 356 | 490 | 690 | | Power input | (E) | W | 6 | 11 | 17 | 9 | 12 | 17 | 9 | 13 | 25 | | Total sound power level | (4)(E) | dB(A) | 33 | 41 | 47 | 36 | 45 | 53 | 39 | 46 | 56 | Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) Water temperature 65°C / 55°C, air temperature 20°C Sound power measured according to standards ISO 3741 and ISO 3742 EUROVENT certified data NOTE: The dimensional drawings of the ESTRO i inverter units are the same of the ESTRO ON/OFF version. They are reported from page 45 inverted to the property of the extra contract co | ESTRO i | | | | 9 | | | 95 | | | 11 | | |---------------------------|--------|-------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | min | med | max | min | med | max | | Control voltage | (E) | ٧ | 5,00 | 6,70 | 8,70 | 4,80 | 6,10 | 8,30 | 3,60 | 6,20 | 8,60 | | Total cooling capacity | (1)(E) | kW | 3,10 | 3,79 | 4,64 | 3,53 | 4,32 | 5,39 | 3,76 | 5,67 | 7,20 | | Sensible cooling capacity | (1)(E) | kW | 2,27 | 2,85 | 3,54 | 2,42 | 3,06 | 3,86 | 3,00 | 4,52 | 5,73 | | FCEER class | (E) | | | В | | | Α | | | В | | | Water flow | (2) | I/h | 534 | 653 | 799 | 608 | 744 | 928 | 647 | 976 | 1240 | | Water pressure drop | (2)(E) | kPa | 7 | 10 | 14 | 10 | 14 | 20 | 5 | 10 | 16 | | Heating capacity | (3)(E) | kW | 3,55 | 4,07 | 4,64 | 3,70 | 4,20 | 4,84 | 4,85 | 6,29 | 7,35 | | FCCOP class | (E) | | | | | | В | | | | | | Water flow | (3) | I/h | 306 | 350 | 400 | 319 | 362 | 417 | 418 | 542 | 633 | | Water pressure drop | (3)(E) | kPa | 7 | 8 | 11 | 7 | 9 | 12 | 14 | 22 | 29 | | Rated air flow | | m³/h | 460 | 593 | 763 | 478 | 603 | 792 | 636 | 1007 | 1362 | | Power input | (E) | W | 19 | 24 | 46 | 13
| 16 | 34 | 18 | 51 | 116 | | Total sound power level | (4)(E) | dB(A) | 46 | 52 | 56 | 46 | 52 | 59 | 48 | 58 | 66 | ⁽¹⁾ Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) (3) Water temperature 65°C / 55°C, air temperature 20°C (4) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data # Fan coil unit with design cabinet, 17 cm in depth # **FLAT S 1 - 3 kW** Vertical installation # The solution tailored to design requirements of residential applications Galletti's FLAT series now becomes SLIM. In fact, with a depth of only 17 cm, FLAT S ensures a compact size that makes it easy to integrate in any context, thus responding to the new design trends in the residential sector (and beyond). The FLAT S mini series means innovation also in terms of engineering: it combines a guarantee of excellent lownoise performance with the advantage of an exclusive design that fits well with both residential and commercial settings. The stylishly designed cabinet (colour RAL9010) is compact and manufactured from steel sheet and UV-stabilised ABS. The upper grille includes a flap and adjustable louvers fitted with a microswitch that automatically shuts down the unit when the flap itself is closed. The adoption of UV-stabilized ABS in the parts making up the cabinet and antistatic ABS in the fan assembly (volute and centrifugal fan) guarantee that the product will maintain the same aesthetics and noise levels throughout its lifetime. # **PLUS** - » Cabinet with a refined design, depth 17 cm - » Microswitch on air flap - » Use of UV-stabilized ABS - » Reversible water connections - » 3-speed motor - » ABS centrifugal fans ## MAIN COMPONENTS ### Cabinet Design cabinet, RAL9010 colour, only 17 cm in depth, front panel made of sheet steel. Side panels and an upper grille with covers on either side manufactured from UV-stabilised ABS to maintain the colour intact over time. The upper grille consists of a flap and adjustable louvers. The flap features a microswitch that automatically shuts down the unit when the flap itself is closed. ### Structure Built from galvanised steel sheet of extra thickness, heat and sound insulated by means of Class 1 self-extinguishing panels. ### **Heat exchanger** High efficiency heat exchanger made with copper piping and aluminium fins, provided with brass manifolds and vent valve. The water connections are reversible at the time of installation. On request it is possible to mount an additional heat exchanger for 4-pipe systems. ### **Fans** Double suction centrifugal fans, statically and dynamically balanced, manufactured from anti-static ABS, with blades having an airfoil section and offset modules. The fans are housed in a low-noise ABS volute with high-efficiency profile. ### **Electric motor** It is mounted on vibration dampers, with permanently activated capacitor and thermal protection of the windings, and is directly coupled with the fans. It is available as either at 3- or (on request) 6-speed version in order to meet all the specific needs of performance, quietness, and power consumption. ### Air filter Honey-comb polypropylene washable air filter, easily removable for maintenance operations. | CONFIGURATOR | | | | | | | | | | | | | | |---|---------|-------|---|---|---|---|---|---|---|---|---|----|----| | The models are completely configurable by selecting the | Version | Field | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | version and the options. To the right is shown an example of configuration. | FLATS13 | | L | 0 | М | 0 | 1 | E | 0 | 0 | 0 | 0 | Α | To verify the compatibility of the options, use the selection software or the price list. ### **CONFIGURATOR** - Version - L Wall mounted with cabinet - Motor - 3-speed motor EC motor - Main coil hydraulic side - Water connections on the left side - Water connections on the right Additional coil hydraulic side / heating element - Absent - Water connections on the left side - Water connections on the right - 5 Valve - Absent - Absent VKS 3 ways valve 230 V ON/OFF complete hydraulic kit KV 2 ways valve 230 V ON/OFF VKMS 3 ways valve 24 V MODULATING complete hydraulic kit KVM 2 ways valve 24 V MODULATING VKS24 3 way valve 24 V ON/OFF complete hydraulic kit KV24 2 way valve 24 V ON/OFF VKSND 3 way valve 24 V ON/OFF hydraulic kit on coil side VKMSND 3 ways valve 24 V MODULATING hydraulic kit on coil side VKS24ND 3 ways valve 24 V MODULATING hydraulic kit on coil side Control panel - Control panel - Absent - CB On-board speed selector - TB Speed selector and thermostat TIB Speed selector, thermostat and S/W selecting switch TED 2T microprocessor control for 2 pipes - TED 4T microprocessor control for 4 pipes - TED 10 microprocessor control for EC MCBE My comfort base MCME My comfort medium - MCLE My comfort large EVOBOARD - Circuit board - EVOBOARD circuit board + NAVEL Wi-Fi module - **Probes** - Absent - SA Remote air probe for MYCOMFORT, LED503 and EVO - SW Water probe for MYCOMFORT, LED503 and EVO - SU Humidity probe for MYCOMFORT and EVO - SA+SW Remote air and water probes for MYCOMFORT, LED503 and EVO - SA+SU Remote air and humidity probes for MYCOMFORT and EVO SA+SU+SW- Remote air, water, humidity probes for MYCOMFORT and EVO TC Thermostat for minimum water temperature - SA Remote air probe for TED - SW Water probe for TED - SA + SW Air and water probes for TED - Accessories - 0 - Absent BV Auxiliary drip tray GIVK Insulating shell - 6 - Filter - 0 Standard filter air - 10 Release - 0 - 0 Α Α | ACCES! | SORIES | | | | | | | | |-----------------|---|---|--|--|--|--|--|--| | | cal control panels | DF | 1-row additional coil for 4 pipes system | | | | | | | СВ | On-board speed switch | Auxiliary water | er drip trays, insulating shell, condensate drainage pump | | | | | | | CD | Recess wall-mounted speed switch | BVK | Auxiliary water drip tray for vertical installation fan coil units | | | | | | | TC | Thermostat for minimum water temperature in heating mode (42 °C) | GIVKL | Insulating shell for VKS valve, water connections on the left | | | | | | | TIB | On-board speed switch, thermostat and summer/winter selecting switch | GIVKR | Insulating shell for VKS valve, water connections on the right | | | | | | | Electronic micr | oprocessor control panels with display | Base and enclosure elements | | | | | | | | COB | Finishing plate for LED 503 controller, RAL9005 black | ZLS | Pair of base and enclosure elements for FLAT S | | | | | | | COG | Finishing plate for LED 503 controller, RAL7031 grey | Rear covering | panels | | | | | | | COW | Finishing plate for LED 503 controller, RAL9003 white | PV | Rear painted panel for vertical installation with cabinet | | | | | | | DIST | MY COMFORT controller spacer for wall mounting | Valves | | | | | | | | EVO-2-TOUCH | 2.8" touch screen user interface for EVO control | KV | 2-way valve, ON/OFF actuator, hydraulic kit on water connection side for main heat exchanger | | | | | | | EVOBOARD | Circuit board for EVO control | KV24DF | 2-way valve, ON/OFF actuator, 24V power supply, hydraulic kit on water connection | | | | | | | EVODISP | User interface with display for EVO controller | RVZ-TDI | side for main and additional heat exchanger | | | | | | | EYNAVEL | Device for Wi-Fi or Bluetooth communication between EVOBOARD and smartphone | V2VDF+STD | 2-way valves, ON/OFF or MUDULATING actuator, 230 V or 24 V power supply, hydraulic | | | | | | | KBFLAE | MY COMFORT on-board installation KIT for FLAT | . ——— | kit, for main and additional heat exchanger | | | | | | | LED503 | Recessed wall-mounted electronic display controller LED 503 | V2VSTD | 2-way valve, ON/OFF or MODULATING actuator, 230 V or 24 V power supply, hydraulic | | | | | | | MCBE | MYCOMFORT BASE electronic controller with display | | kit, for main heat exchanger 3-way valves, ON/OFF or MODULATING actuator, 230 V or 24 V power supply, hydraulic | | | | | | | MCLE | Microprocessor control with display MY COMFORT LARGE | V3VDF | kit, for additional heat exchanger | | | | | | | MCME | MYCOMFORT MEDIUM electronic controller with display | | 2-way valves, ON/OFF or MODULATING actuator, 230 V or 24 V power supply, hydraulic | | | | | | | MCSUE | Humidity sensor for MY COMFORT (medium e large), EVO | V3VSTD | kit, for main heat exchanger | | | | | | | MCSWE | Water sensor for MYCOMFORT and EVO controllers | | 3-way valve, ON/OFF actuator, 24V power supply, complete hydraulic kit for additional | | | | | | | | oprocessor control panels | VKDF24 | heat exchanger | | | | | | | KB F | On-board FLAT/FLAT S installation kit suitable for TED controller | WALC | 3-way valve, MODULATING actuator, 24 V power supply, complete hydraulic kit for main | | | | | | | TED 2T | Electronic controller for AC fan control and one ON/OFF 230 V valve | VKMS | heat exchanger | | | | | | | TED 4T | Electronic controller for AC fan control and two ON/OFF 230 V valves | VKMSND | 3-way valve, MODULATING actuator, 24 V power supply, hydraulic kit without holder, | | | | | | | TED SWA | Water temperature sensor for TED controls | ANGINIA | for main heat exchanger | | | | | | | | e and regulating louver controllers | VKSND | 3-way valve, ON/OFF actuator, 230 V power supply, hydraulic kit without holder, for | | | | | | | KP | Power interface for connecting in parallel up to 4 fun coil units to the one controller | *************************************** | main heat exchanger | | | | | | | Additional hea | t exchanger for 4-pipe systems | VPIC | 2-way valves
pressure independent, ON/OFF actuator, 230 V power supply, hydraulic kit, for main heat exchanger | | | | | | | FLAT S | | | 13 | | | 23 | | 33 | | | 43 | | | | |---------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | | Total cooling capacity | (1)(E) | kW | 0,85 | 0,96 | 1,22 | 0,99 | 1,22 | 1,58 | 1,39 | 1,73 | 2,28 | 1,74 | 2,11 | 2,74 | | Sensible cooling capacity | (1)(E) | kW | 0,60 | 0,68 | 0,87 | 0,74 | 0,91 | 1,19 | 1,00 | 1,24 | 1,65 | 1,25 | 1,52 | 1,99 | | FCEER class | (E) | | | | | | | | D | | | | | | | Water flow | (2) | l/h | 148 | 168 | 213 | 173 | 214 | 277 | 243 | 303 | 399 | 303 | 369 | 479 | | Water pressure drop | (2)(E) | kPa | 3 | 3 | 5 | 5 | 7 | 11 | 3 | 5 | 7 | 5 | 7 | 10 | | Heating capacity | (3)(E) | kW | 0,81 | 0,92 | 1,16 | 1,00 | 1,22 | 1,59 | 1,52 | 1,85 | 2,40 | 1,85 | 2,22 | 2,86 | | FCCOP class | (E) | | | | | | | | E | | | | | | | Water flow | (3) | l/h | 141 | 160 | 201 | 174 | 211 | 277 | 264 | 321 | 417 | 321 | 386 | 497 | | Water pressure drop | (3)(E) | kPa | 2 | 3 | 4 | 4 | 7 | 12 | 3 | 4 | 7 | 4 | 6 | 9 | | Rated air flow | | m³/h | 115 | 135 | 170 | 135 | 170 | 225 | 200 | 250 | 340 | 250 | 310 | 420 | | Power input | (E) | W | 12 | 17 | 23 | 16 | 23 | 31 | 26 | 32 | 42 | 29 | 35 | 48 | | Total sound power level | (4)(E) | dB(A) | 30 | 35 | 40 | 35 | 40 | 46 | 32 | 38 | 46 | 37 | 42 | 49 | ⁽¹⁾ Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) (3) Water temperature 45°C / 40°C, air temperature 20°C | FLAT S | FLAT S | | | 13 | | 23 | | 33 | | | 43 | | | | |---------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | | Total cooling capacity | (1)(E) | kW | 0,85 | 0,96 | 1,22 | 1,08 | 1,33 | 1,72 | 1,40 | 1,74 | 2,29 | 1,75 | 2,12 | 2,75 | | Sensible cooling capacity | (1)(E) | kW | 0,60 | 0,68 | 0,87 | 0,74 | 0,91 | 1,19 | 1,00 | 1,24 | 1,65 | 1,25 | 1,52 | 1,99 | | FCEER class | (E) | | | | | | | | D | | | | | | | Water flow | (2) | l/h | 148 | 168 | 213 | 186 | 230 | 300 | 243 | 303 | 399 | 303 | 368 | 477 | | Water pressure drop | (2)(E) | kPa | 3 | 3 | 5 | 5 | 7 | 11 | 3 | 5 | 7 | 5 | 7 | 10 | | Heating capacity | (3)(E) | kW | 1,04 | 1,15 | 1,36 | 1,35 | 1,56 | 1,91 | 1,88 | 2,16 | 2,69 | 2,16 | 2,45 | 3,02 | | FCCOP class | (E) | | | | | | | | D | | | | | | | Water flow | (3) | l/h | 91 | 100 | 119 | 118 | 136 | 167 | 165 | 189 | 235 | 189 | 215 | 264 | | Water pressure drop | (3)(E) | kPa | 2 | 2 | 3 | 4 | 5 | 7 | 1 | 2 | 3 | 2 | 2 | 3 | | Rated air flow | | m³/h | 115 | 135 | 170 | 135 | 170 | 225 | 200 | 250 | 340 | 250 | 310 | 420 | | Power input | (E) | W | 12 | 17 | 23 | 14 | 20 | 27 | 23 | 28 | 37 | 25 | 31 | 42 | | Total sound power level | (4)(E) | dB(A) | 30 | 35 | 40 | 35 | 40 | 46 | 32 | 38 | 46 | 37 | 42 | 49 | ⁽¹⁾ Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) (3) Water temperature 65°C / 55°C, air temperature 20°C ⁽⁴⁾ Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) ⁽⁴⁾ Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) # FLAT S ### LEGEND | 1 | Water connections standard heat exchanger ø 1/2" | | | | | | |-------|---|--|--|--|--|--| | 2 | DF 1-row additional heat exchanger water connections ø 1/2" | | | | | | | 3 | Condensate discharge diameter for vertical installation ø 16 mm | | | | | | | Conde | Condensate discharge diameter for horizontal installation ø 17 mm | | | | | | | FLAT S | A | L | <u> </u> | |---------|-----|------|----------| | FLAI 3 | mm | mm | kg | | 13 | 534 | 820 | 17 | | 23 | 704 | 990 | 21 | | 33 - 43 | 874 | 1160 | 23 | # Fan coil unit with design cabinet, only 17 cm in depth and EC motor # **FLAT S i 1 - 3 kW** installation Centrifugal # The solution tailored to design requirements of residential applications Galletti's FLAT series now becomes SLIM. In fact, with a depth of only 17 cm, FLAT S ensures a compact size that makes it easy to integrate in any context, thus responding to the new design trends in the residential sector (and beyond). The FLAT S mini series means innovation also in terms of engineering: it combines a guarantee of excellent lownoise performance with the advantage of an exclusive design that fits well with both residential and commercial settings. The Galletti FLAT S i indoor hydronic units are equipped with a permanent magnet (brushless) electric motor, controlled by an inverter, which enables continuous adjustment in the number of fan revolutions. In addition to the important reduction in electricity consumption compared to AC motors, the use of inverter EC technology makes it possible to continually adjust the operation of the unit to the actual thermo-hygrometric load of the interior, with a clear benefit in terms of comfort and reducing noise. Its use is particularly effective in the frequent cases of operation under partial load conditions, the situation that occurs most frequently, when the adjustment logic allows greatly reduced motor rotation speeds with exceptional reductions in electricity consumption and noise emissions The operation of the unit with brushless motor is managed by EVO, MYCOMFORT LARGE or TED microprocessor control panel, using an analogue output (0-10 V) which is connected to the inverter. # **PLUS** - » Cabinet with a refined design, depth 17 cm - » Low energy consumption - » Modulating operation - » Microswitch on exit air flap - » Reversible water connections - » Inverter-controlled EC motor - » ABS centrifugal fans ### **AVAILABLE VERSIONS** Suspended wall installation, with cabinet, with vertical air flow 2 and 4 pipes system ## MAIN COMPONENTS ### **Cabinet** Design cabinet, RAL9010 colour, only 17 cm in depth, front panel made of sheet steel. Side panels and an upper grille with covers on either side manufactured from UV-stabilised ABS to maintain the colour intact over time. The upper grille consists of a flap and adjustable louvers. The flap features a microswitch that automatically shuts down the unit when the flap itself is closed. ### **Structure** Built from galvanised steel sheet of extra thickness, heat and sound insulated by means of Class 1 self-extinguishing panels. ### **Heat exchanger** High efficiency heat exchanger made with copper piping and aluminium fins, provided with brass manifolds and vent valve. The water connections are reversible at the time of installation. On request it is possible to mount an additional heat exchanger for 4-pipe systems. ### **Fans** Double suction centrifugal fans, statically and dynamically balanced, manufactured from anti-static ABS, with blades having an airfoil section and offset modules. The fans are housed in a low-noise ABS volute with high-efficiency profile. ### **Electric motor** The unit is equipped with an inverter board to control the motor, which can be used separately or installed on the motor itself. This system makes it possible to precisely set the maximum rotation speed of the motor (control signal 0-10 V) even when the maximum rotation speed must be controlled to reduce noise levels. ### Air filter Honey-comb polypropylene washable air filter, easily removable for maintenance operations. | ACCES: | SORIES | | | |-------------------------|--|----------|---| | Electronic mici | oprocessor control panels with display MY COMFORT controller spacer for wall mounting | KVDF | 2-way valve, ON/OFF actuator, 230 V power supply, hydraulic kit on water connection side for main and additional heat exchanger | | EVO-2-TOUCH
EVOBOARD | 2.8" touch screen user interface for EVO control Circuit board for EVO control | KVM | 2-way valve, MODULATING actuator, 24 V power supply, hydraulic kit on water connection side for main heat exchanger | | EVODISP
EYNAVEL | User interface with display for EVO controller Device for Wi-Fi or Bluetooth communication between EVOBOARD and smartphone | KVMDF | 2-way valve, MODULATING actuator, 24 V power supply, hydraulic kit on water connec-
tion side for main and additional heat exchanger | | KBFLAE | MY COMFORT on-board installation KIT for FLAT Microprocessor control with display MY COMFORT LARGE | VKDF | 3-way valve, ON/OFF actuator, 230 V power suppply, complete hydraulic kit for additional heat exchanger | | MCSUE
MCSWE | Humidity sensor for MY COMFORT (medium e large), EVO Water sensor for MY COMFORT and EVO controllers | VKDF24 | 3-way valve, ON/OFF actuator, 24V power supply, complete hydraulic kit for additional
heat exchanger | | Electronic mici | water sensor for incommon and evolutioners opposessor control panels On-board FLAT/FLAT'S installation kit suitable for TED controller | VKDF24ND | 3-way valve, ON/OFF actuator, 24V power supply, hydraulic kit without holder, for
additional heat exchanger | | KB F
TED 10 | Electronic controller for EC fan equipped with inverter and ON/OFF valves 230 V | VKDFND | 3-way valve, ON/OFF actuator, 230 V power supply, hydraulic kit without holder, for
additional heat exchanger | | | Water temperature sensor for TED controls t exchanger for 4-pipe systems | VKMDF | 3-way valve, MODULATING
actuator, 24 V power supply, complete hydraulic kit for
additional heat exchanger | | DF
Auxiliary wate | 1-row additional coil for 4 pipes system r drip trays, insulating shell, condensate drainage pump | VKMDFND | 3-way valve, MODULATING actuator, 24 V power supply, hydraulic kit without holder,
for additional heat exchanger | | GIVKL | Auxiliary water drip tray for vertical installation fan coil units Insulating shell for VKS valve, water connections on the left | VKMS | 3-way valve, MODULATING actuator, 24 V power supply, complete hydraulic kit for main
heat exchanger | | GIVKR
Base and enclo | Insulating shell for VKS valve, water connections on the right | VKMSND | 3-way valve, MODULATING actuator, 24 V power supply, hydraulic kit without holder,
for main heat exchanger | | ZLS
Rear covering | Pair of base and enclosure elements for FLAT S | VKS | 3-way valve, ON/OFF actuator, 1230 V power supply, complete hydraulic kit for main
heat exchanger | | PV
Valves | Rear painted panel for vertical installation with cabinet | VKS24 | 3-way valve, ON/OFF actuator, 24V power supply, complete hydraulic kit for main heat
exchanger | | KV | 2-way valve, ON/OFF actuator, hydraulic kit on water connection side for main heat exchanger | VKS24ND | 3-way valve, ON/OFF actuator, 24V power supply, hydraulic kit without holder, for main
heat exchanger | | KV24 | 2-way valve, ON/OFF actuator, 24V power supply, hydraulic kit on water connection side for main heat exchanger | VKSND | 3-way valve, ON/OFF actuator, 230 V power supply, hydraulic kit without holder, for
main heat exchanger | | KV24DF | 2-way valve, ON/OFF actuator, 24V power supply, hydraulic kit on water connection side for main and additional heat exchanger | VPIC | 2-way valves pressure independent, ON/OFF actuator, 230 V power supply, hydraulic kit, for main heat exchanger | | FLAT S i | FLAT S i | | | | 13 | | | | 43 | | | | | |---------------------------|----------|-------|------|------|------|------|------|------|------|------|------|--|--| | Speed | | | min | med | max | min | med | max | min | med | max | | | | Control voltage | (E) | ٧ | 4,80 | 5,80 | 7,70 | 4,50 | 5,80 | 7,90 | 5,10 | 6,30 | 8,00 | | | | Total cooling capacity | (1)(E) | kW | 0,85 | 0,97 | 1,23 | 0,97 | 1,19 | 1,53 | 1,76 | 2,11 | 2,74 | | | | Sensible cooling capacity | (1)(E) | kW | 0,60 | 0,69 | 0,88 | 0,74 | 0,93 | 1,20 | 1,26 | 1,52 | 1,99 | | | | FCEER class | (E) | | | D | | | В | | | В | | | | | Water flow | (2) | I/h | 148 | 168 | 213 | 168 | 230 | 300 | 303 | 368 | 477 | | | | Water pressure drop | (2)(E) | kPa | 3 | 3 | 5 | 6 | 8 | 12 | 5 | 6 | 10 | | | | Heating capacity | (3)(E) | kW | 0,88 | 1,01 | 1,27 | 1,00 | 1,22 | 1,54 | 1,85 | 2,19 | 2,83 | | | | FCCOP class | (E) | | | D | | | C | | | В | | | | | Water flow | (3) | l/h | 155 | 176 | 221 | 174 | 211 | 277 | 321 | 380 | 492 | | | | Water pressure drop | (3)(E) | kPa | 2 | 3 | 4 | 5 | 8 | 11 | 4 | 6 | 9 | | | | Rated air flow | | m³/h | 115 | 135 | 170 | 135 | 170 | 225 | 250 | 310 | 420 | | | | Power input | (E) | W | 11 | 13 | 16 | 9 | 10 | 14 | 10 | 12 | 21 | | | | Total sound power level | (4)(E) | dB(A) | 30 | 35 | 40 | 35 | 40 | 46 | 37 | 42 | 49 | | | - (1) Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) (3) Water temperature 45°C / 40°C, air temperature 20°C (4) Sound power measured according to standards ISO 3741 and ISO 3742 (5) EUROVENT cartified data - (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) | FLAT S i | FLAT S i | | | | 13 | | | | 43 | | | | |---------------------------|----------|-------|------|------|------|------|------|------|------|------|------|--| | Speed | | | min | med | max | min | med | max | min | med | max | | | Control voltage | (E) | ٧ | 4,80 | 5,80 | 7,70 | 4,50 | 5,80 | 7,90 | 5,10 | 6,30 | 8,00 | | | Total cooling capacity | (1)(E) | kW | 0,85 | 0,97 | 1,23 | 1,08 | 1,33 | 1,74 | 1,75 | 2,12 | 2,75 | | | Sensible cooling capacity | (1)(E) | kW | 0,60 | 0,69 | 0,88 | 0,74 | 0,92 | 1,21 | 1,26 | 1,54 | 2,01 | | | FCEER class | (E) | | | В | | | | | | | | | | Water flow | (2) | I/h | 148 | 168 | 213 | 186 | 230 | 300 | 303 | 368 | 477 | | | Water pressure drop | (2)(E) | kPa | 3 | 3 | 5 | 4 | 7 | 11 | 5 | 7 | 10 | | | Heating capacity | (3)(E) | kW | 1,04 | 1,15 | 1,36 | 1,35 | 1,56 | 1,91 | 2,16 | 2,45 | 3,02 | | | FCCOP class | (E) | | | C | | | В | | | В | | | | Water flow | (3) | I/h | 91 | 100 | 119 | 118 | 136 | 167 | 189 | 215 | 264 | | | Water pressure drop | (3)(E) | kPa | 2 | 2 | 3 | 4 | 5 | 7 | 2 | 2 | 3 | | | Rated air flow | | m³/h | 115 | 135 | 170 | 135 | 170 | 225 | 250 | 310 | 420 | | | Power input | (E) | W | 7 | 8 | 10 | 7 | 8 | 11 | 10 | 12 | 21 | | | Total sound power level | (4)(E) | dB(A) | 30 | 35 | 40 | 35 | 40 | 46 | 37 | 42 | 49 | | - (1) Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) (3) Water temperature 65°C / 55°C, air temperature 20°C (4) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Repert current 220 1 50 (M by Hz) - Power supply 230-1-50 (V-ph-Hz) # FLAT S i ### LEGEND | 1 | Water connections standard heat exchanger ø 1/2" | | | | | | | |---|---|--|--|--|--|--|--| | 2 | DF 1-row additional heat exchanger water connections ø 1/2" | | | | | | | | 3 | Condensate discharge diameter for vertical installation ø 16 mm | | | | | | | | Condensate discharge diameter for horizontal installation ø 17 mm | | | | | | | | | FLATSi | A | L | A | |--------|-----|------|----| | ILAISI | mm | mm | kg | | 13 | 534 | 820 | 17 | | 23 | 704 | 990 | 21 | | 43 | 874 | 1160 | 23 | # Design fan coil units with centrifugal fan # **FLAT 2 - 5 kW** Vertical installation Centrifugal fan # Galletti FLAT: performance and design in a single indoor unit FLAT Galletti has been engineered to offer performance and design features placing it at the top of its category. The uniqueness of FLAT lies both in the use of extremely high quality materials - which contribute to making this product exceptionally robust - and the assurance of constant performance over time. FLAT optimizes the distribution of air in the room thanks to the integrated air outlet grille which makes it possible to direct the treated, filtered air in 4 directions. The main flap is equipped with a microswitch which shuts off the fan and the valves when the flap closes. The flap is useful for avoiding dust build-up in periods of non-use. The adoption of UV-stabilized ABS in the parts making up the cabinet and antistatic ABS in the fan assembly (volute and centrifugal fan) guarantee that the product will maintain the same aesthetics and noise levels throughout its lifetime. Particular care has been taken in the design of the fan drive assembly, which guarantees exceptionally quiet operation both in version with 3- and 6-speed motors. # **PLUS** - » Cabinet with a refined design - » Microswitch on exit air flap - » Use of UV-stabilized ABS - » Reversible water connections - » 3 6 speed motor - » ABS centrifugal fans ### MAIN COMPONENTS ### **Cabinet** RAL9010 colour, front panel made of sheet steel. Side panels and an upper grille with covers on either side manufactured from UV-stabilised ABS to maintain the colour intact over time. The upper grille consists of a flap and adjustable louvers. The flap features a microswitch that automatically shuts down the unit hen the flap itself is closed ### **Structure** Built from galvanised steel sheet of extra thickness, heat and sound insulated by means of Class 1 self-extinguishing panels. ### Heat exchanger High efficiency heat exchanger made with copper piping and aluminium fins, provided with brass manifolds and vent valve. The water connections are reversible at the time of installation. On request it is possible to mount an additional heat exchanger for 4-pipe systems. FC-67 ### **Fans** Double suction centrifugal fans, statically and dynamically balanced, manufactured from anti-static ABS, with blades having an airfoil section and offset modules. The fans are housed in a low-noise ABS volute with high-efficiency profile. ### **Electric motor** It is mounted on vibration dampers, with permanently activated capacitor and thermal protection of the windings, and is directly coupled with the fans. It is available as either a 3- or 6-speed version in order to meet all the specific needs of performance, quietness, and power consumption. ### Air filter Honey-comb polypropylene washable air filter, easily removable for maintenance operations. | CONFIGURATOR | | | | | | | | | | | | | | |---|---------|-------|---|---|---|---|---|---|---|---|---|----|----| | The models are completely configurable by selecting the | Version | Field | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | version and the options. To the right is shown an example of configuration. | FLAT10 | | L | 0 | М | 0 | 1 | E | 0 | 0 | 0 | 0 | Α | To verify the compatibility of the options, use the selection software or the price list. ### CONFIGURATOR - Version - L Wall mounted with cabinet - Motor - 0 3-speed motor - BLDC motor - 6 speed motor Main coil hydraulic side Water connections on the left side - Water connections on the right Additional coil hydraulic side / heating element - Water connections on the left side - R Water connections on the right - 5 Valve - 0 Absent - VKS 3 ways valve 230 V ON/OFF complete hydraulic kit - KV 2 ways valve 230 V ON/OFF - VKMS 3 ways valve 24
V MODULATING complete hydraulic kit KVM 2 ways valve 24 V MODULATING VKS24 3 way valve 24 V ON/OFF complete hydraulic kit KV24 2 way valve 24 V ON/OFF bydraulic kit on coil side - VKMSND 3 ways valve 24 V MODULATING hydraulic kit on coil side - VKS24ND 3 ways valve 24 V ON/OFF hydraulic kit on coil side - Control panel - Absent - CB On-board speed selector - TIB Speed selector, thermostat and S/W selecting switch - TED 2T microprocessor control for 2 pipes TED 4T microprocessor control for 4 pipes - TED 10 microprocessor control for BLDC - MCBE My comfort base MCME My comfort medium - MCLE My comfort large - EVOBOARD Circuit board - G EVOBOARD circuit board + NAVEL Wi-Fi module - Probes - Absent SA Remote air probe for MYCOMFORT, LED503 and EVO - SW Water probe for MYCOMFORT, LED503 and EVO - SU Humidity probe for MYCOMFORT and EVO - SA+SW Remote air and water probes for MYCOMFORT, LED503 and EVO SA+SU Remote air and humidity probes for MYCOMFORT and EVO SA+SU+SW- Remote air, water, humidity probes for MYCOMFORT and EVO TC Thermostat for minimum water temperature SA Remote air probe for TED - SW Water probe for TED - SA + SW Air and water probes for TED - Accessories - 0 Absent - BV Auxiliary drip tray GIVK Insulating shell - Air deionization - Air deionization with control panel - Filter - Standard filter air 0 - 10 Release - 0 - 11 Release | ACCESS | SORIES | |------------------|---| | Elecromechanic | al control panels | | СВ | On-board speed switch | | CD | Recess wall-mounted speed switch | | CDE | Wall mounted speed selector | | TA | Wall-mounted room thermostat | | TA2 | Electromechanical room thermostat with summer/winter selection | | TC | Thermostat for minimum water temperature in heating mode (42 °C) | | TIB | On-board speed switch, thermostat and summer/winter selecting switch | | Electronic micro | processor control panels with display | | COB | Finishing plate for LED 503 controller, RAL9005 black | | COG | Finishing plate for LED 503 controller, RAL7031 grey | | COW | Finishing plate for LED 503 controller, RAL9003 white | | DIST | MY COMFORT controller spacer for wall mounting | | EVO-2-TOUCH | 2.8" touch screen user interface for EVO control | | EVOBOARD | Circuit board for EVO control | | EVODISP | User interface with display for EVO controller | | EYNAVEL | Device for Wi-Fi or Bluetooth communication between EVOBOARD and smartphone | | KBFLAE | MY COMFORT on-board installation KIT for FLAT | | LED503 | Recessed wall-mounted electronic display controller LED 503 | | MCBE | MYCOMFORT BASE electronic controller with display | | MCLE | Microprocessor control with display MY COMFORT LARGE | | MCME | MYCOMFORT MEDIUM electronic controller with display | | MCSUE | Humidity sensor for MY COMFORT (medium e large), EVO | | MCSWE | Water sensor for MYCOMFORT and EVO controllers | | Electronic micro | processor control panels | | KB F | On-board FLAT/FLAT S installation kit suitable for TED controller | | TED 2T | Electronic controller for AC fan control and one ON/OFF 230 V valve | | Electronic controller for AC fan control and two ON/OFF 230 V valves | |--| | Water temperature sensor for TED controls | | and regulating louver controllers | | Power interface for connecting in parallel up to 4 fun coil units to the one controller | | exchanger for 4-pipe systems | | 1-row additional coil for 4 pipes system | | drip trays, insulating shell, condensate drainage pump | | Auxiliary water drip tray for horizontal installation fan coil units | | Auxiliary water drip tray for vertical installation fan coil units | | Insulating shell for VKS valve, water connections on the left | | Insulating shell for VKS valve, water connections on the right | | sure elements | | Pair of base and enclosure elements for FLAT L | | anels | | Rear painted panel for horizontal installation with cabinet | | Rear painted panel for vertical installation with cabinet | | | | 2-way valves, ON/OFF or MUDULATING actuator, 230 V or 24 V power supply, hydraulic kit, for main and additional heat exchanger | | 2-way valve, ON/OFF or MODULATING actuator, 230 V or 24 V power supply, hydraulic kit, for main heat exchanger | | 3-way valves, ON/OFF or MODULATING actuator, 230 V or 24 V power supply, hydraulic kit, for additional heat exchanger | | 2-way valves, ON/OFF or MODULATING actuator, 230 V or 24 V power supply, hydraulic kit, for main heat exchanger | | 2-way valves pressure independent, ON/OFF actuator, 230 V power supply, hydraulic kit, for main heat exchanger | | | # **Fan coil FLAT** # 2 PIPES - RATED TECHNICAL DATA | FLAT | | | 10 | | | 20 | | | 30 | | | 40 | | | |---------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | | Total cooling capacity | (1)(E) | kW | 1,19 | 1,34 | 1,77 | 1,38 | 1,71 | 2,22 | 1,44 | 2,01 | 2,66 | 1,67 | 2,29 | 2,87 | | Sensible cooling capacity | (1)(E) | kW | 0,86 | 0,96 | 1,27 | 1,02 | 1,27 | 1,66 | 1,10 | 1,53 | 2,03 | 1,27 | 1,75 | 2,20 | | FCEER class | (E) | | D | | | E | | | E | | | E | | | | Water flow | (2) | l/h | 205 | 231 | 305 | 238 | 294 | 382 | 248 | 346 | 458 | 288 | 394 | 494 | | Water pressure drop | (2)(E) | kPa | 6 | 7 | 12 | 6 | 8 | 13 | 3 | 5 | 7 | 4 | 6 | 10 | | Heating capacity | (3)(E) | kW | 1,16 | 1,29 | 1,71 | 1,38 | 1,67 | 2,17 | 1,55 | 2,04 | 2,72 | 1,76 | 2,32 | 2,89 | | FCCOP class | (E) | | | E | | | | | | | | | | | | Water flow | (3) | I/h | 200 | 222 | 294 | 238 | 288 | 374 | 267 | 351 | 468 | 303 | 400 | 498 | | Water pressure drop | (3)(E) | kPa | 4 | 5 | 9 | 6 | 8 | 12 | 2 | 4 | 6 | 3 | 5 | 8 | | Rated air flow | | m³/h | 212 | 226 | 305 | 227 | 284 | 378 | 239 | 344 | 467 | 277 | 407 | 520 | | Power input | (E) | W | 19 | 23 | 33 | 25 | 38 | 57 | 28 | 43 | 57 | 29 | 45 | 60 | | Total sound power level | (4)(E) | dB(A) | 34 | 38 | 44 | 38 | 44 | 50 | 30 | 38 | 44 | 33 | 42 | 48 | | FLAT | | 50 | | | 60 | | 70 | | | | | |---------------------------|--------|-------|------|------|------|------|------|------|------|------|------| | Speed | min | med | max | min | med | max | min | med | max | | | | Total cooling capacity | (1)(E) | kW | 2,05 | 2,56 | 3,26 | 2,21 | 2,92 | 4,08 | 2,53 | 3,30 | 4,38 | | Sensible cooling capacity | (1)(E) | kW | 1,61 | 2,00 | 2,53 | 1,76 | 2,33 | 3,28 | 2,04 | 2,69 | 3,60 | | FCEER class | (E) | | | E | | | E | | D | | | | Water flow | (2) | l/h | 353 | 441 | 561 | 381 | 503 | 703 | 436 | 568 | 754 | | Water pressure drop | (2)(E) | kPa | 4 | 5 | 8 | 3 | 5 | 8 | 8 | 13 | 23 | | Heating capacity | (3)(E) | kW | 2,24 | 2,67 | 3,36 | 2,64 | 3,36 | 4,61 | 2,96 | 3,76 | 4,96 | | FCCOP class | (E) | | | E | | | | | | | | | Water flow | (3) | l/h | 386 | 460 | 579 | 455 | 579 | 794 | 510 | 647 | 854 | | Water pressure drop | (3)(E) | kPa | 3 | 4 | 5 | 4 | 7 | 11 | 8 | 14 | 22 | | Rated air flow | | m³/h | 338 | 466 | 593 | 365 | 552 | 800 | 418 | 659 | 911 | | Power input | (E) | W | 40 | 56 | 75 | 38 | 58 | 88 | 41 | 65 | 96 | | Total sound power level | (4)(E) | dB(A) | 36 | 42 | 50 | 42 | 52 | 59 | 43 | 51 | 58 | - (1) Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) (3) Water temperature 45°C / 40°C, air temperature 20°C (4) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) | FLAT | | | 10 | | | 20 | | | 30 | | | 40 | | | | |---------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------|--| | Speed | | | min | med | max | | | Total cooling capacity | (1)(E) | kW | 1,23 | 1,39 | 1,76 | 1,32 | 1,64 | 2,04 | 1,39 | 1,95 | 2,51 | 1,61 | 2,22 | 2,70 | | | Sensible cooling capacity | (1)(E) | kW | 0,88 | 1,00 | 1,28 | 0,97 | 1,22 | 1,54 | 1,06 | 1,48 | 1,93 | 1,22 | 1,70 | 2,08 | | | FCEER class | (E) | | D | | | | E | | | E | | | E | | | | Water flow | (2) | l/h | 212 | 239 | 303 | 227 | 282 | 351 | 239 | 336 | 432 | 277 | 382 | 465 | | | Water pressure drop | (2)(E) | kPa | 5 | 6 | 9 | 5 | 8 | 12 | 2 | 4 | 7 | 3 | 6 | 9 | | | Heating capacity | (3)(E) | kW | 1,35 | 1,46 | 1,76 | 1,44 | 1,65 | 1,96 | 1,78 | 2,13 | 2,59 | 1,96 | 2,35 | 2,74 | | | FCCOP class | (E) | | | E | | | | | | | | | | | | | Water flow | (3) | l/h | 116 | 126 | 152 | 124 | 142 | 169 | 153 | 183 | 223 | 169 | 202 | 236 | | | Water pressure drop | (3)(E) | kPa | 3 | 3 | 5 | 3 | 4 | 6 | 6 | 9 | 12 | 7 | 10 | 13 | | | Rated air flow | | m³/h | 187 | 215 | 289 | 205 | 270 | 359 | 232 | 332 | 451 | 273 | 393 | 502 | | | Power input | (E) | W | 28 | 34 | 49 | 25 | 38 | 57 | 28 | 43 | 57 | 29 | 45 | 60 | | | Total sound power level | (4)(E) | dB(A) | 34 | 41 | 47 | 40 | 45 | 50 | 31 | 39 | 45 | 35 | 43 | 49 | | | FLAT | | | | 50 | | | 60 | | 70 | | | |---------------------------|--------|-------|------|------|------|------|------|------|------|------|------| | Speed | min | med | max | min | med | max | min | med | max | | | | Total cooling capacity | (1)(E) | kW | 1,96 | 2,46 | 3,06 | 2,12 | 2,82 | 3,82 | 2,43 | 3,18 | 4,09 | | Sensible cooling capacity | (1)(E) | kW | 1,55 | 1,92 | 2,40 | 1,69 | 2,24 | 3,10 | 1,96 | 2,59 | 3,40 | | FCEER class | (E) | | | | | | E | | | | | | Water flow | (2) | l/h | 338 | 424 | 527 | 365 | 486 | 658 | 418 | 548 | 704 | | Water pressure drop | (2)(E) | kPa | 3 | 4 | 6 | 6 | 8 | 15 | 5 | 8 | 12 | | Heating capacity | (3)(E) | kW | 2,55 | 2,87 | 3,36 | 2,70 | 3,15 | 3,91 | 2,98 | 3,46 | 4,16 | | FCCOP class | (E) | | Ē | | | | | | | | | | Water flow | (3) | l/h | 220 | 247 | 289 | 232 | 271 | 337 | 257 | 298 | 358 | | Water pressure
drop | (3)(E) | kPa | 4 | 6 | 8 | 5 | 8 | 10 | 3 | 3 | 5 | | Rated air flow | | m³/h | 356 | 447 | 569 | 390 | 530 | 768 | 462 | 631 | 873 | | Power input | (E) | W | 40 | 56 | 75 | 38 | 58 | 88 | 41 | 65 | 96 | | Total sound power level | (4)(E) | dB(A) | 36 | 45 | 50 | 42 | 48 | 56 | 43 | 51 | 58 | - Water temperature 7° C / 12° C, air temperature dry bulb 27° C, wet bulb 19° C (47% relative humidity) according to EN1397:2021 Water temperature 7° C / 12° C, air temperature dry bulb 27° C, wet bulb 19° C (47% relative humidity) Water temperature 65° C / 55° C, air temperature 20° C Sound power measured according to standards ISO 3741 and ISO 3742 - (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) ### DIMENSIONAL DRAWINGS # Design fan coil unit with centrifugal fan and EC motor # **FLAT i 2 - 5 kW** installation # Technology and design in a single solution The Galletti FLAT i indoor hydronic units are equipped with a permanent magnet (brushless) electric motor, controlled by an inverter, which enables continuous adjustment in the number of fan revolutions. In addition to the important reduction in electricity consumption compared to AC motors, the use of inverter EC technology makes it possible to continually adjust the operation of the unit to the actual thermo-hygrometric load of the interior, with a clear benefit in terms of comfort and reducing noise. Its use is particularly effective in the frequent cases of operation under partial load conditions, the situation that occurs most frequently, when the adjustment logic allows greatly reduced motor rotation speeds with exceptional reductions in electricity consumption and noise The operation of the unit with brushless motor is managed by EVO, MYCOMFORT LARGE or TED microprocessor control panel, using an analogue output (0-10 V) which is connected to the inverter. ## **PLUS** - » Inverter-controlled EC motor - » Low energy consumption - » Modulating operation - » ABS centrifugal fans - » Cabinet with a refined design in UV-stabilized ABS - » Microswitch on exit air flap - » Reversible water connections ### **AVAILABLE VERSIONS** ### FLAT Li Suspended wall installation, with cabinet, with vertical air flow. ## MAIN COMPONENTS # Cabinet with a refined design RAL9010 colour, front panel made of sheet steel. Side panels and an upper grille with covers on either side manufactured from UV-stabilised ABS to maintain the colour intact over time. The upper grille consists of a flap and adjustable louvers. The flap features a microswitch that automatically shuts down the unit hen the flap itself is closed ### **Structure** Built from galvanised steel sheet of extra thickness, heat and sound insulated by means of Class 1 self-extinguishing panels. ### **Heat exchanger** High efficiency heat exchanger made with copper piping and aluminium fins, provided with brass manifolds and vent valve. The water connections are reversible at the time of installation. On request it is possible to mount an additional heat exchanger for 4-pipe systems. ### **Fans** Double suction centrifugal fans, statically and dynamically balanced, manufactured from anti-static ABS, with blades having an airfoil section and offset modules. The fans are housed in a low-noise ABS volute with high-efficiency profile. ### **EC** electric motor The unit is equipped with an inverter board to control the motor, which can be used separately or installed on the motor itself. This system makes it possible to precisely set the maximum rotation speed of the motor (control signal 0-10 V) even when the maximum rotation speed must be controlled to reduce noise levels. ### Air filter Honey-comb polypropylene washable air filter, easily removable for maintenance operations. | Electronic mic | roprocessor control panels with display | |-----------------------|---| | DIST | MY COMFORT controller spacer for wall mounting | | EVO-2-TOUCH | 2.8" touch screen user interface for EVO control | | EVOBOARD | Circuit board for EVO control | | EVODISP | User interface with display for EVO controller | | EYNAVEL | Device for Wi-Fi or Bluetooth communication between EVOBOARD and smartphone | | KBFLAE | MY COMFORT on-board installation KIT for FLAT | | MCLE | Microprocessor control with display MY COMFORT LARGE | | MCSUE | Humidity sensor for MY COMFORT (medium e large), EVO | | MCSWE | Water sensor for MYCOMFORT and EVO controllers | | Electronic mic | roprocessor control panels | | KB F | On-board FLAT/FLAT S installation kit suitable for TED controller | | TED 10 | Electronic controller for EC fan equipped with inverter and ON/OFF valves 230 V | | TED SWA | Water temperature sensor for TED controls | | Additional hea | t exchanger for 4-pipe systems | | DF | 1-row additional coil for 4 pipes system | | Auxiliary wate | r drip trays, insulating shell, condensate drainage pump | | BH | Auxiliary water drip tray for horizontal installation fan coil units | | BV | Auxiliary water drip tray for vertical installation fan coil units | |----------------|--| | GIVKL | Insulating shell for VKS valve, water connections on the left | | GIVKR | Insulating shell for VKS valve, water connections on the right | | Base and enclo | osure elements | | ZL | Pair of base and enclosure elements for FLAT L | | Rear covering | panels | | PH | Rear painted panel for horizontal installation with cabinet | | PV | Rear painted panel for vertical installation with cabinet | | Valves | | | V2VDF+STD | 2-way valves, ON/OFF or MUDULATING actuator, 230 V or 24 V power supply, hydraulic kit, for main and additional heat exchanger | | V2VSTD | 2-way valve, ON/OFF or MODULATING actuator, 230 V or 24 V power supply, hydraulic kit, for main heat exchanger | | V3VDF | 3-way valves, ON/OFF or MODULATING actuator, 230 V or 24 V power supply, hydraulic kit, for additional heat exchanger | | V3VSTD | 2-way valves, ON/OFF or MODULATING actuator, 230 V or 24 V power supply, hydraulic kit, for main heat exchanger | | VPIC | 2-way valves pressure independent, ON/OFF actuator, 230 V power supply, hydraulic kit, for main heat exchanger | ## 2 PIPES - RATED TECHNICAL DATA | FLAT i | | | 20 | | | | 40 | | 70 | | | |---------------------------|--------|-------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | min | med | max | min | med | max | | Control voltage | (E) | ٧ | 5,10 | 6,90 | 8,80 | 4,40 | 6,50 | 8,30 | 4,50 | 6,30 | 8,90 | | Total cooling capacity | (1)(E) | kW | 1,39 | 1,74 | 2,26 | 1,46 | 2,00 | 2,50 | 2,56 | 3,34 | 4,43 | | Sensible cooling capacity | (1)(E) | kW | 1,03 | 1,30 | 1,70 | 1,12 | 1,55 | 1,93 | 2,07 | 2,73 | 3,65 | | FCEER class | (E) | | | | | | В | | | | | | Water flow | (2) | l/h | 239 | 300 | 389 | 251 | 344 | 430 | 441 | 575 | 763 | | Water pressure drop | (2)(E) | kPa | 6 | 8 | 13 | 4 | 6 | 10 | 6 | 8 | 16 | | Heating capacity | (3)(E) | kW | 1,52 | 1,84 | 2,39 | 1,76 | 2,32 | 2,89 | 2,96 | 3,76 | 4,96 | | FCCOP class | (E) | | | | | | В | | | | | | Water flow | (3) | l/h | 262 | 317 | 412 | 303 | 400 | 498 | 510 | 647 | 854 | | Water pressure drop | (3)(E) | kPa | 6 | 8 | 12 | 3 | 5 | 8 | 5 | 9 | 14 | | Rated air flow | | m³/h | 216 | 284 | 378 | 283 | 407 | 520 | 482 | 659 | 911 | | Power input | (E) | W | 7 | 11 | 22 | 9 | 15 | 31 | 13 | 21 | 49 | | Total sound power level | (4)(E) | dB(A) | 38 | 44 | 53 | 33 | 42 | 48 | 43 | 51 | 58 | - (1) Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) (3) Water temperature 45°C / 40°C, air temperature 20°C (4) Sound power measured according to standards ISO 3741 and ISO 3742 (5) EUROVENT cartified data - (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) ## 4 PIPES - RATED TECHNICAL DATA | FLATi | | | 20 | | | | 40 | | 70 | | | | |---------------------------|--------|-------|------|------|------|------|------|------|------|------|------|--| | Speed | | | min | med | max | min | med | max | min | med | max | | | Control voltage | (E) | ٧ | 5,10 | 6,90 | 8,80 | 4,40 | 6,50 | 8,30 | 4,50 | 6,30 | 8,90 | | | Total cooling capacity | (1)(E) | kW | 1,21 | 1,51 | 1,88 | 1,63 | 2,25 | 2,74 | 2,46 | 3,22 | 4,14 | | | Sensible cooling capacity | (1)(E) | kW | 0,92 | 1,16 | 1,47 | 1,24 | 1,73 | 2,12 | 1,99 | 2,63 | 3,45 | | | FCEER class | (E) | | C | | | | A | | | В | | | | Water flow | (2) | l/h | 210 | 262 | 329 | 282 | 389 | 475 | 425 | 558 | 721 | | | Water pressure drop | (2)(E) | kPa | 5 | 8 | 12 | 3 | 6 | 9 | 4 | 6 | 9 | | | Heating capacity | (3)(E) | kW | 1,44 | 1,65 | 1,96 | 1,96 | 2,35 | 2,74 | 2,98 | 3,46 | 4,16 | | | FCCOP class | (E) | | | В | | | В | | | В | | | | Water flow | (3) | l/h | 124 | 142 | 169 | 169 | 202 | 236 | 257 | 298 | 358 | | | Water pressure drop | (3)(E) | kPa | 3 | 4 | 6 | 7 | 10 | 13 | 3 | 3 | 5 | | | Rated air flow | | m³/h | 205 | 270 | 359 | 273 | 393 | 502 | 462 | 631 | 873 | | | Power input | (E) | W | 10 | 16 | 31 | 7 | 12 | 24 | 13 | 21 | 49 | | | Total sound power level | (4)(E) | dB(A) | 40 | 45 | 50 | 35 | 43 | 49 | 43 | 51 | 58 | | - (1) Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) (3) Water temperature 65°C / 55°C, air temperature 20°C (4) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Reserve curely 220 1 50 (M pb Hz) - Power supply 230-1-50 (V-ph-Hz) ## FLAT L i www.galletti.com ## LEGEND | 1 |
Water connections standard heat exchanger ø 1/2" | |---|---| | 2 | DF 1-row additional heat exchanger water connections ø 1/2" | | 3 | Condensate discharge diameter for vertical installation ø 16 mm | | Ø | Condensate discharge diameter for horizontal installation ø 17 mm | | FLAT L i | A | L | A | |----------|-----|------|----| | ILAILI | mm | mm | kg | | 20 | 534 | 820 | 19 | | 40 | 704 | 990 | 23 | | 70 | 874 | 1160 | 28 | ## **Hydronic indoor units CFV** ## Recess-mounted fan coil with formwork ## **CFV 1 - 4 kW** vertical installation mounted ## INVISIBLE AIR CONDITIONING FOR **EXTRAORDINARY COMFORT** CFV is the perfect solution to meet the design requirement of completely concealing the indoor unit. The heart of this product is the CF fan coil, which is suitable for any type of installation with a depth of only 12.6 cm. Its compact dimensions are combined with low energy consumption thanks to the EC inverter motor which, in comparison to a conventional AC motor, guarantees energy savings of up to 70 % during its seasonal operation. The fan coil is housed in the galvanised steel CYC casing for both vertical and horizontal installation. Pre-cuts are provided in the metal structure at the hydraulic and electrical connections of the unit for ease of installation. The CYP front cover panel conceals the fan coil but at the same time provides easy access for all maintenance operations. Integration with the wall is maximised by the possibility of painting the front panel, which makes it literally disappear into the room to be air-conditioned. ## **PLUS** - » Inverter-controlled EC motor - » Low energy consumption - » Modulating operation - » Easy accessibility to the fan coil - » Paintable front panel ### VERSIONS #### CFV VERTICAL INSTALLATION - 1. CYPV frontal panel - 2. CF Fan coil - 3. Formwork CYC ### CFV HORIZONTAL INSTALLATION - 1. CYPH frontal panel - 2. CF Fan coil - 3. Formwork CYC - 4. CYRMCD telescopic duct - 5. Air outlet grille with straight profile CY8048 ## SETTINGS **CONFIGURATOR** The models are completely configurable by selecting the Version Field 1 2 3 4 5 6 7 8 9 10 11 version and the options. To the right is shown an example CF10 (0 0 0 L 1 of configuration. To verify the compatibility of the options, use the selection software or the price list. #### **CONFIGURATOR** - Version C Recessed - 2 Motor - Inverter motor Main coil hydraulic side - - Left - Additional coil hydraulic side / heating element - 0 Absent Left DF - R Right DF - Valve - 3-way on/off 230V - 2-way on/off 230V Control panel 2 - 7 Circuit board on the unit for connection to MY COMFORT LARGE - Probes - Absent - Accessories - 0 Absent - Filter - Standard air filter 0 - Release 10 0 - Α Α | ACCES | SSORIES | | | |---------------|---|-------------|--| | Electronic mi | croprocessor control panels with display | RMC90 | 90° curve air supply duct | | CYBOARD | On-board electronic circuit board for MYCOMFORT connection | RMCD | Telescopic air supply duct | | DIST | MY COMFORT controller spacer for wall mounting | Accessories | | | MCLE | Microprocessor control with display MY COMFORT LARGE | C*0A00 | Galvanised sheet steel casing for 2-pipe version | | MCSWE | Water sensor for MYCOMFORT and EVO controllers | C*0A01 | Galvanised sheet steel casing for 4-pipe version | | Air inlet and | outlet grilles | P*0AH0 | Ceiling-mounted cover panel with frame and intake grille for 2-pipe version | | 8048 | Aluminium air outlet grille with 2-row fins | P*0AH1 | Ceiling-mounted cover panel with frame and intake grille for 4-pipe version | | Valves | | P*0AV0 | Wall-mounted cover panel with frame, intake grille, and outlet louver for 2-pipe | | K4S | 3-way kit valve for 4 pipes system | P"UAVU | version | | KV24K | 2-way kit valve for 4 pipes system | P*0AV1 | Wall-mounted cover panel with frame, intake grille, and outlet louver for 4-pipe | | KVK | 2-way valve with thermo-electric actuator | I VAVI | version | | Plenum, air i | ntake modules, air inlet and outlet connectors and cabinets | T | Motor connection cable for moving hydraulic connections from left to right on site | ## 2 PIPES - RATED TECHNICAL DATA | CFV | | | | 10 | | | 20 | | | 30 | | | 40 | | | 50 | | |---------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | | Control voltage | (E) | ٧ | 3,30 | 6,80 | 10,0 | 3,30 | 6,80 | 10,0 | 3,30 | 6,80 | 10,0 | 3,30 | 6,80 | 10,0 | 3,30 | 6,80 | 10,0 | | Total cooling capacity | (1)(E) | kW | 0,43 | 0,73 | 0,91 | 0,75 | 1,36 | 2,12 | 1,15 | 2,08 | 2,81 | 1,32 | 2,39 | 3,30 | 1,36 | 2,57 | 3,71 | | Sensible cooling capacity | (1)(E) | kW | 0,29 | 0,51 | 0,71 | 0,59 | 1,04 | 1,54 | 0,83 | 1,51 | 2,11 | 1,02 | 1,84 | 2,65 | 1,05 | 1,98 | 2,90 | | FCEER class | (E) | | | C | | | В | | | Α | , | A | | A | | | | | Water flow | (2) | l/h | 74 | 126 | 157 | 129 | 234 | 365 | 198 | 358 | 484 | 227 | 412 | 568 | 234 | 443 | 639 | | Water pressure drop | (2)(E) | kPa | 6 | 10 | 12 | 2 | 4 | 8 | 3 | 10 | 17 | 3 | 9 | 18 | 3 | 11 | 21 | | Heating capacity | (3)(E) | kW | 0,37 | 0,69 | 1,02 | 0,82 | 1,53 | 2,21 | 1,20 | 2,16 | 3,02 | 1,47 | 2,59 | 3,81 | 1,49 | 2,82 | 4,32 | | FCCOP class | (E) | | | D | | | В | | | В | | | В | | | В | | | Water flow | (3) | l/h | 64 | 119 | 176 | 141 | 263 | 381 | 207 | 372 | 520 | 253 | 446 | 656 | 257 | 486 | 744 | | Water pressure drop | (3)(E) | kPa | 3 | 7 | 9 | 2 | 4 | 9 | 3 | 9 | 19 | 3 | 9 | 21 | 3 | 7 | 23 | | Rated air flow | | m³/h | 49 | 90 | 146 | 118 | 210 | 294 | 180 | 318 | 438 | 247 | 410 | 567 | 262 | 479 | 663 | | Power input | (E) | W | 5 | 7 | 11 | 4 | 8 | 19 | 6 | 11 | 20 | 5 | 11 | 29 | 6 | 12 | 33 | | Total sound power level | (4)(E) | dB(A) | 37 | 47 | 54 | 37 | 47 | 54 | 37 | 47 | 54 | 37 | 47 | 55 | 37 | 48 | 57 | - (1) Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) (3) Water temperature 45°C / 40°C, air temperature 20°C (4) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) ## **Hydronic indoor units CFV** | Mod. | A | В | |--------|------|------| | Mou. | mm | mm | | CF10CI | 378 | 305 | | CF20CI | 578 | 505 | | CF30CI | 778 | 705 | | CF40CI | 978 | 905 | | CF50CI | 1178 | 1105 | | | | | ## High wall-mounted fan coil units ## **GHW 2 - 4 kW** **AVAILABLE FROM Q2/2** ## Where space is precious, comfort comes from above. In recent years, energy saving has become a top priority. GHW meets this need thanks to the EC motor with inverter technology, which ensures high efficiency, the hourly programming function, which allows operation to be adapted to actual needs, and the eco mode, designed to offer optimal comfort while minimizing consumption. Installing a high-wall fan coil is an intelligent solution to optimize space in modern environments, where every square meter counts. This type of installation not only frees up floor space for furniture or other uses but also allows for more even air distribution, improving living The infrared remote control makes comfort control extremely convenient, allowing you to adjust temperature, ventilation speed, and operating modes comfortably from the sofa. GHW can be integrated into a supervision system via the Modbus communication protocol. Additionally, the presence of the pre-installed 3-way valve and flexible piping system simplifies and speeds up installation. Infrared Tangential fan High wall mounting **PLUS** - » Electronically controlled EC motor - » Compact dimensions, identical for the whole range - » Incorporated 3- way ON OFF valves - » Self-diagnosis system with error code display on the screen. - » Construction of global addressable networks with an external supervisor ## MAIN COMPONENTS #### **Cabinet** Characterized by an elegant and versatile design, designed to harmoniously fit into any environment, it is made of durable ABS. The air outlet is equipped with a motorized horizontal deflector, which can operate automatically or be manually adjusted by the user, along with a vertical deflector with adjustable fins to ensure uniform air distribution in the environment. The front panel includes an integrated display, showing the operating status and the temperature detected in the environment. #### **Heat exchanger** The finned block heat exchangers consist of copper tubing and aluminium fins. Thanks to the hydrophilic treatment, the wettability of the aluminum fins is improved, ensuring rapid removal of condensation from the fan coil and preventing the formation of mold and bacteria. #### Valve assembly 3-way ON/OFF valves already wired and installed inside the indoor unit. The connection to the system is made with hoses located on the rear of the unit. The valve diverts part of the unused water flow from the fan coil to a bypass circuit, ensuring the stability of the flow in the main system. #### EC motor and fun The electronic motor with permanent magnets is designed to modulate the ventilation speed, reducing electricity consumption to less than half compared to asynchronous motors. The motor acts on the rotation of a low-noise tangential fan. #### Remote control Included by default, the infrared remote control allows you to control all the fan coil functions, including setting the on/off timer. #### **WALLPAD** The GHWWP wallpad manages all the functions of the infrared remote control but is also equipped with a large LCD display that makes the user experience more intuitive. ## RATED TECHNICAL DATA | GHW | | 13 | | | 23 | | | 33 | | | | | | |---------------------------
--------|-------|------|------|------|------|------|------|------|------|------|--|--| | Speed | | | min | med | max | min | med | max | min | med | max | | | | Total cooling capacity | (1)(E) | kW | 1,80 | 2,04 | 2,30 | 2,19 | 2,54 | 2,91 | 2,88 | 3,30 | 3,81 | | | | Sensible cooling capacity | (1)(E) | kW | 1,38 | 1,55 | 1,74 | 1,71 | 2,00 | 2,33 | 2,31 | 2,71 | 3,18 | | | | FCEER class | | | | Α | | | D | | | В | | | | | Water flow | (1) | l/h | 360 | 400 | 460 | 380 | 450 | 510 | 510 | 570 | 670 | | | | Water pressure drop | (1)(E) | kPa | 18 | 22 | 29 | 23 | 30 | 37 | 33 | 41 | 57 | | | | Heating capacity | (2)(E) | kW | 1,70 | 2,00 | 2,73 | 2,42 | 2,77 | 3,23 | 3,09 | 3,65 | 4,30 | | | | FCCOP class | | | | В | | D | | | В | | | | | | Water flow | (2) | l/h | 380 | 450 | 490 | 420 | 490 | 560 | 560 | 640 | 730 | | | | Water pressure drop | (2)(E) | kPa | 18 | 22 | 29 | 23 | 30 | 37 | 33 | 41 | 57 | | | | Rated air flow | | m³/h | 356 | 412 | 462 | 331 | 339 | 484 | 590 | 698 | 825 | | | | Power input | (E) | W | 9 | 10 | 11 | 29 | 32 | 35 | 15 | 20 | 34 | | | | Total sound power level | (3)(E) | dB(A) | 39 | 40 | 42 | 35 | 42 | 48 | 47 | 51 | 57 | | | ⁽¹⁾ Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 45°C / 40°C, air temperature 20°C (3) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) Weight Condensate discharge 13 20 13 mm kg 13 ## Design module with the Coandă effect - EFFETTO ## Design module with the Coandă effect ## **EFFETTO** # Comfort and design in perfect harmony Galletti introduces EFFETTO, the design module for air intake and diffusion designed to complement the reliability and comfort of ACQVARIA and ACQVARIA i hydronic cassette units (600x600 mm model). EFFETTO breaks with standard hydronic cassette units, going far beyond the classic ABS grille with adjustable fins, and presents a design module that takes advantage of the Coandă effect. Galletti's Advanced Design Unit has created an Italian-made hydronic cassette unit with a minimalist, streamlined design that can be incorporated into the style of any space, even in terms of colour. EFFETTO is not just about aesthetics but also comfort, as it has been designed to optimise air diffusion thanks to the Coandă effect. EFFETTO's Dibond metal panel is comprised of a sandwich of aluminium and polyethylene. The fine metallic finish is combined with the insulating properties of polyethylene to prevent condensation. The steel intake grille creates a single surface with the panel, thus enhancing the overall subtlety of the product. The filter can be easily removed for maintenance operations. The air duct is made of black RAL 9005 polystyrene for a perfect colour match, and its geometry is designed to optimise the air flow in the room. The brightness of the aluminium allows the grille to adapt to any situation, while keeping the milled edge of the panel, which outlines its shape, clearly visible, even in low light conditions. The module, detached from the ceiling, interacts with all the elements and light sources in the room. EFFETTO is the perfect choice to ensure a smooth, streamlined appearance to the space to be air-conditioned. #### **AVAILABLE VERSIONS** Three colour versions are available: brushed natural aluminium, white RAL 9010, and black RAL 9005. Black is also used for all the components of the internal and technological structure in order to create a shadow effect on the surrounding surfaces, making the panel appear to float in the air. Grey - natural brushed aluminium White - RAL 9010 Black - black RAL 9005 ## COMPUTATIONAL FLUID DYNAMICS SIMULATIONS #### **AIR DUCT** Computational fluid dynamics (CFD) simulations have made it possible to study the diffusion of air in interiors in order to make the most of the Coandă effect: the air flow reaches the ceiling without passing directly over the occupant, thus preventing localised discomfort. Cross-section of the EFFETTO module with air flows highlighted. #### **HEATING CASE STUDY** In CFD simulations we evaluated a space used as a restaurant that can accommodate about 100 people equipped with 9 ACQVARIA hydronic cassette units with EFFETTO module. The design summer conditions are: outdoor air temperature 5 °C, room setpoint temperature 20 °C. Standard UNI EN ISO 7730 identifies indices that define situations of temperature and humidity discomfort: Floor temperature; Highly uneven vertical temperatures; Draughts; Predicted Mean Vote. #### **COOLING MODE CASE STUDY** In CFD simulations we evaluated a space used as a restaurant that can accommodate about 100 people equipped with 9 ACQVARIA hydronic cassette units with EFFETTO module. The design summer conditions are: outdoor air temperature 33 °C, room setpoint temperature 26 °C. The geometry of the black polystyrene conveyors was designed with the help of CFD simulations and experimental verifications at the R&D laboratories Galletti. The aim was to ensure that the air jet touches the ceiling and walls without ever directly hitting the occupant through the Coandă effect. The air distribution in the room is homogeneous, the left zone has a higher than average air temperature because it is adjacent to the kitchen. #### CONCLUSIONS All the comfort indices taken into consideration confirmed that the temperature and humidity comfort conditions are guaranteed even in the presence of air stratification in the areas near the ceiling, which is a common occurrence during the heating season. ## Design module with the Coandă effect - EFFETTO EFFETT Hir Cliss ## EFFETTO AIRCLISSI Often hydronic indoor units are evaluated on the basis of a single criterion: their technical performance. Undoubtedly, thermodynamic and acoustic performance are very important, but only if they are part of a broader comprehensive concept. Today, the hydronic indoor unit must be considered equally with all the other furnishings in the space to be air-conditioned: a platform capable of interacting with the layout of the environment and the people who live in it. This interaction is now even stronger, with a novel emotional dimension for hydronic cassette units: light. EFFETTO has now been combined with AirClissi to become the first Coandă effect illuminated module in the field of hydronic cassette units: air and light come together to create a unique design. EFFETTO AirClissi is a new Galletti product that takes the concept of the hydronic cassette unit to an unprecedented aesthetic level, where light is the new star of the show. #### **AVAILABLE VERSIONS** AirClissi illuminated module is available in neutral 4000 K light. This chromatic version is compatible with Grey, White, and Black EFFETTO. The light intensity can be regulated by means of the EVO microprocessor controller. A single device gives you full control over the temperature and humidity conditions of the space and now also over its lighting. Its extreme elegance is achieved through combining minimal lines and character, the Dibond material, and light | ACQVARIA | ≟
kg | |---|----------------| | AQ10Q0B0 - AQ10QIB0 -
AQ10Q0BB - AQ10QIBB | 23 + 2,5 | | AQ20Q0BO - AQ20QIBO -
AQ20Q0BB - AQ30Q0BO
- AQ30QIBO - AQ30Q0BB
- AQ30QIBB | 24 + 2,5 | | LEGEND | | |--------|-----------------------------------| | 1 | Electric box | | 2 | Condensate discharge ø 10 | | 3 | Water outlet ø 1/2" female gas | | 4 | Water inlet ø 1/2" female gas | | 5 | Water outlet ø 1/2" DF female gas | | 6 | Water inlet ø 1/2" DF female gas | | 7 | AirClissi panel (optional) | | | | ## Cassette fan coils ## **ACQVARIA 3 - 10 kW** 2 pipes Recess ceiling-mount ## **PLUS** - » Reliability and sturdiness in a compact design - » Fresh air with direct or mixed introduction - » Heat exchanger up to 3 rows - » Condensate drainage pump for height differences of up to 0.9 m - » Reduced installation and commissioning time #### AVAIL ABLE VERSIONS In addition to the 2 ABS grilles with adjustable fins it is available EFFETTO and EFFETTO AirClissi. EFFETTO, module for intake and diffusion air with the Coandă effect EFFETTO Airclissi, new design concept which integrates light with the Coandă effect air diffusion. Grey - natural brushed aluminium White - RAL 9010 **EFFETTO** Black - black RAL 9005 ## Solidity and efficiency in a single product. The range of hydronic cassette units ACQVARIA, with 3 speed motor, consists of six models for 2-pipe systems and six models for 4-pipe systems. Designed in two dimensional frames (600x600 mm and 900x900 mm modularity), it is characterised by high performance and extremely low noise levels, as a result of the special care taken in the design of the heat exchangers and fan assemblies. The suspended ceiling unit houses all the components, heat exchange coil, fan drive assembly, and condensate collection and drainage system. Its structure is designed for introducing fresh air into the space, mixing it with recovered air, and distributing the treated air from the cassette unit to adjacent rooms. The condensate drainage pump, suitable for height differences of up to 90 cm, is controlled by a float switch with 3 activation levels for exceptionally low noise and safe operation. The design and colour, RAL9003 or RAL9010, of the air intake and diffusion louvre guarantee optimal integration into the suspended ceiling panels. Easy access to the air filter for cleaning operations. ACQVARIA cassette units can be combined with all wall-mounted, electronic, or microprocessor-programmable control panels with user interface. On request, the EVO BOARD regulator; air, water, and humidity probes; and 2- or 3-way valves with ON-OFF or modulating actuator can be installed on the unit. Are also available pressure-independent balancing and control valves, the use of which
significantly reduces commissioning time. Neutral light EFFETTO + AirClissi ### MAIN COMPONENTS #### **Structure** Made of galvanised steel sheet with internal polyure thane foam coating and external flocked PES to guarantee heat and sound insulation. Fresh air can be introduced into the room directly through the unit due to the provision of connections for neutral or mixed introduction. Accessories are available for connection to ducts. There are systems on the unit for anchoring it to the ceiling. The electrical wiring is housed in a containment box and is easily accessible from the side for easy connection #### **Heat exchanger** Copper pipe and high efficiency aluminium fins secured to the pipe by mechanical expansion. With at least two rows in the models for 2-pipe systems, it is available in the 2+1 configuration in the models for 4-pipe systems. The coil comes complete with manual air vent valves. On request, valves can be connected to the coil to regulate and balance the operation of the unit. #### Fan drive assembly Three-speed electrical motor, directly connected to a centrifugal fan with backward-curving blades with profile optimised for stable operation at all speeds. #### Air filter Honey-comb polypropylene washable air filter, easily removable for maintenance operations. #### Condensate collection and drainage system Located under the heat exchanger, the main drip tray is made of polystyrene and is inserted inside the profiles optimised for the distribution of air in the space. The condensate drainage pump is able to raise the condensate up to 0.9 m from the exit point from the unit. The operation of the pump is controlled by a float switch with three levels of action that activate it, stop it and, if the critical level is exceeded, stop the operation of the cassette unit fan and close the water valve. The supply is completed by the auxiliary water drip tray for the collection of condensate from the regulating valves. #### Louvre It is square shaped for the intake and diffusion of air in the space, and it is made of ABS, colour RAL9003 or RAL9010. The air intake louvre can be opened for access to the air filter. Air is diffused in the space through the 4 sides, each of which is equipped with an adjustable fin with suitable thermal insulation. Also available from today the new alluminium design module EFFETTO for intake and diffusion air with the Coandă effect. #### **Control mode** Galletti renews the fan coil control modes by integrating, on the EVO platform, the new EVO-2-TOUCH user interface and the NAVEL device for management with a smartphone. #### **EVO-2-TOUCH** is a user-friendly user interface with a 2.8" capacitive display with built-in temperature and humidity probes. #### NAVEL is the device paired with EVOBOARD that makes possible Wi-Fi or Bluetooth communication with a smartphone containing GALLETTI APP (available for iOS and Android). | ACCES: | SORIES | |-----------------|---| | Electronic micr | oprocessor control panels with display | | DIST | MY COMFORT controller spacer for wall mounting | | EVO-2-TOUCH | 2.8" touch screen user interface for EVO control | | EVOBOARD | Circuit board for EVO control | | EVODISP | User interface with display for EVO controller | | EYNAVEL | Device for Wi-Fi or Bluetooth communication between EVOBOARD and smartphone | | LED503 | Recessed wall-mounted electronic display controller LED 503 | | MCBE | MYCOMFORT BASE electronic controller with display | | MCLE | Microprocessor control with display MY COMFORT LARGE | | MCME | MYCOMFORT MEDIUM electronic controller with display | | MCSUE | Humidity sensor for MY COMFORT (medium e large), EVO | | MCSWE | Water sensor for MYCOMFORT and EVO controllers | | Electronic micr | oprocessor control panels | | TED 2T | Electronic controller for AC fan control and one ON/OFF 230 V valve | | | | | TED 4T | Electronic controller for AC fan control and two ON/OFF 230 V valves | |-------------|--| | TED SWA | Water temperature sensor for TED controls | | Power inter | face and regulating louver controllers | | KP | Power interface for connecting in parallel up to 4 fun coil units to the one controller | | Valves | | | PIC-AQ | PRESSURE-INDEPENDENT 2-way valves | | V2-AQ | 2-way valve, ON/OFF or MODULATING actuator, 230 V or 24 V power supply, hydraulic kit, for model with 1 or 2 heat exchangers | | V3-AQ | 3-way valve, ON/OFF or MODULATING actuator, 230 V or 24 V power supply, hydraulic kit, for model with 1 or 2 heat exchangers | | Plenum, air | intake modules, air inlet and outlet connectors and cabinets | | BAR | Spigot for introduction of mixed renewal air | | MOB | Cabinet for cassette | | PAR | Plenum for introduction of unmixed renewal air | | PMAA | Air outlet plenum | ## **Cassette unit ACQVARIA** ## RATED TECHNICAL DATA 2 PIPES | ACQVARIA | | | | AQ10Q0B0 | | | AQ20Q0B0 | | AQ30Q0B0 | | | |---------------------------|--------|-------|------|----------|------|------|----------|------|----------|------|------| | Speed | | | min | med | max | min | med | max | min | med | max | | Total cooling capacity | (1)(E) | kW | 1,70 | 1,97 | 2,53 | 2,39 | 3,55 | 4,31 | 3,40 | 4,61 | 5,00 | | Sensible cooling capacity | (1)(E) | kW | 1,33 | 1,60 | 2,14 | 1,78 | 2,53 | 3,18 | 2,43 | 3,44 | 3,79 | | FCEER class | (E) | | | C | | | C | | D | | | | Water flow | (1) | I/h | 295 | 342 | 441 | 416 | 616 | 749 | 593 | 803 | 873 | | Water pressure drop | (1)(E) | kPa | 3 | 4 | 6 | 9 | 19 | 26 | 9 | 16 | 18 | | Heating capacity | (2)(E) | kW | 1,97 | 2,33 | 3,10 | 2,29 | 3,44 | 4,30 | 3,49 | 4,92 | 5,35 | | FCCOP class | (E) | | | C | | | D | | E | | | | Water flow | (2) | I/h | 342 | 404 | 539 | 399 | 597 | 747 | 607 | 855 | 930 | | Water pressure drop | (2)(E) | kPa | 3 | 5 | 8 | 7 | 15 | 22 | 8 | 15 | 17 | | Rated air flow | | m³/h | 297 | 379 | 557 | 306 | 487 | 640 | 479 | 717 | 805 | | Power input | (E) | W | 18 | 23 | 42 | 32 | 40 | 50 | 57 | 74 | 89 | | Total sound power level | (3)(E) | dB(A) | 33 | 37 | 45 | 39 | 43 | 50 | 47 | 55 | 58 | | ACQVARIA | | | | AQ40Q0B0 | | | AQ50Q0B0 | | AQ60Q0B0 | | | | |---------------------------|--------|-------|------|----------|------|------|----------|------|----------|------|------|--| | Speed | | | min | med | max | min | med | max | min | med | max | | | Total cooling capacity | (1)(E) | kW | 4,64 | 5,36 | 7,01 | 5,16 | 6,11 | 8,24 | 6,34 | 8,61 | 9,73 | | | Sensible cooling capacity | (1)(E) | kW | 3,42 | 3,99 | 5,29 | 3,68 | 4,37 | 6,10 | 4,59 | 6,40 | 7,35 | | | FCEER class | (E) | | | | | | С | | | | | | | Water flow | (1) | l/h | 805 | 930 | 1223 | 893 | 1060 | 1434 | 1097 | 1498 | 1696 | | | Water pressure drop | (1)(E) | kPa | 14 | 18 | 28 | 12 | 16 | 26 | 16 | 26 | 32 | | | Heating capacity | (2)(E) | kW | 5,16 | 6,06 | 8,17 | 5,22 | 6,53 | 9,18 | 6,71 | 9,53 | 11,1 | | | FCCOP class | (E) | | | D | | | С | | D | | | | | Water flow | (2) | l/h | 897 | 1053 | 1420 | 908 | 1136 | 1596 | 1167 | 1656 | 1930 | | | Water pressure drop | (2)(E) | kPa | 14 | 18 | 30 | 10 | 15 | 26 | 15 | 26 | 33 | | | Rated air flow | | m³/h | 801 | 997 | 1494 | 718 | 902 | 1380 | 902 | 1380 | 1651 | | | Power input | (E) | W | 47 | 64 | 108 | 47 | 64 | 108 | 64 | 108 | 147 | | | Total sound power level | (3)(E) | dB(A) | 35 | 40 | 51 | 35 | 40 | 51 | 40 | 51 | 56 | | ⁽¹⁾ Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 45°C / 40°C, air temperature 20°C (3) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) ## RATED TECHNICAL DATA 4 PIPES | ACQVARIA | | | | AQ10Q0BB | | | AQ20Q0BB | | AQ30Q0BB | | | |------------------------------|--------|-------|-------|----------|------|------|----------|------|----------|------|------| | Speed | | | min | med | max | min | med | max | min | med | max | | Total cooling capacity DF | (1)(E) | kW | 1,56 | 1,85 | 2,35 | 2,31 | 2,83 | 3,38 | 3,19 | 4,04 | 4,31 | | Sensible cooling capacity DF | (1)(E) | kW | 1,24 | 1,49 | 1,94 | 1,85 | 2,22 | 2,77 | 2,45 | 3,27 | 3,46 | | FCEER class DF | (E) | | | C | | | E | | E | | | | Water flow | | l/h | 271 | 321 | 410 | 403 | 493 | 589 | 556 | 707 | 754 | | Water pressure drop | (E) | kPa | 3 4 6 | | 8 | 16 | 22 | 15 | 24 | 25 | | | Heating capacity | (2)(E) | kW | 2,53 | 2,88 | 3,55 | 3,15 | 3,62 | 4,22 | 4,42 | 5,25 | 5,61 | | FCCOP class | (E) | | | C | | | D | | D | | | | Water flow | (2) | l/h | 222 | 258 | 311 | 271 | 317 | 369 | 380 | 452 | 483 | | Water pressure drop | (2)(E) | kPa | 4 | 5 | 8 | 5 | 9 | 12 | 10 | 14 | 15 | | Rated air flow | | m³/h | 289 | 366 | 533 | 306 | 487 | 640 | 479 | 717 | 805 | | Power input | (E) | W | 18 | 23 | 42 | 35 | 55 | 73 | 44 | 67 | 75 | | Total sound power level | (3)(E) | dB(A) | 33 | 37 | 45 | 39 | 43 | 50 | 47 | 56 | 58 | | ACQVARIA | | | | AQ35Q0BB | | | AQ40Q0BB | | AQ60Q0BB | | | | |------------------------------|--------|-------|---------|----------|------|------|----------|------|----------|------|------|--| | Speed | | | min | med | max | min | med | max | min | med | max | | | Total cooling capacity DF | (1)(E) | kW | 3,50 | 4,39 | 4,68 | 4,73 | 6,60 | 7,45 | 5,83 | 8,48 | 9,00 | | | Sensible cooling capacity DF | (1)(E) | kW | 2,56 | 3,17 | 3,50 | 3,47 | 5,04 | 5,81 | 4,29 | 6,56 | 6,98 | | | FCEER class DF | (E) | | | D | | | C | | D | | | | | Water flow | | I/h | 602 | 755 | 805 | 822 | 1148 | 1299 | 1010 | 1477 | 1571 | | | Water pressure drop | (E) | kPa | 8 12 15 | | 10 | 20 | 25 | 16 | 31 | 34 | | | | Heating capacity | (2)(E) | kW | 2,57 | 2,94 | 3,18 | 6,57 | 8,76 | 9,67 | 8,64 | 11,7 | 12,4 | | | FCCOP class | (E) | | | E | | | C | | | C | | | | Water flow | (2) | I/h | 221 | 253 | 273 | 634 |
840 | 929 | 757 | 1026 | 1083 | | | Water pressure drop | (2)(E) | kPa | 7 | 12 | 14 | 12 | 19 | 23 | 16 | 27 | 30 | | | Rated air flow | | m³/h | 479 | 717 | 805 | 718 | 1147 | 1380 | 902 | 1544 | 1651 | | | Power input | (E) | W | 44 | 67 | 75 | 47 | 86 | 108 | 64 | 128 | 147 | | | Total sound power level | (3)(E) | dB(A) | 47 | 55 | 58 | 39 | 47 | 51 | 40 | 54 | 56 | | ⁽¹⁾ Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 65°C / 55°C, air temperature 20°C (3) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) ## ACQVARIA 10-20-30-35 #### LEGEND | | 1 | Electric box | |---|---|-----------------------------------| | | 2 | Condensate discharge ø 10 | | | 3 | Water outlet ø 1/2" female gas | | | 4 | Water inlet ø 1/2" female gas | | | 5 | Water outlet ø 1/2" DF female gas | | | 6 | Water inlet ø 1/2" DF female gas | | - | | | NOTE It is possible to combine the EFFETTO and EFFETTO AirClissi module with the ACQVARIA 60x60 cm cassette, for the dimensional drawing refer to page 85 | ACQVARIA | ≜
kg | |---|----------------| | AQ10Q0B0 - AQ10Q0BB | 23 + 2,5 | | AQ20Q0B0 - AQ30Q0B0 - AQ20Q0BB -
AQ30Q0BB - AQ35Q0BB | 24 + 2,5 | ## ACQVARIA 40, 50, 60 (Size 50 not available for dual coil version) | ACQVARIA | ≗
kg | |-----------------------------------|----------------| | AQ40Q0B0 - AQ40Q0BB | 42 + 5 | | AQ50Q0B0 - AQ60Q0B0
- AQ60Q0BB | 43 + 5 | | 1 | Electric box | |---|-----------------------------------| | 2 | Condensate discharge ø 10 | | 3 | Water outlet ø 3/4" female gas | | 4 | Water inlet ø 3/4" female gas | | 5 | Water inlet ø 1/2" DF female gas | | 6 | Water outlet ø 1/2" DF female gas | ## Cassette units ACQVARIA i ## Cassette fan coils with FC motor ## **ACQVARIA i 3 – 10 kW** ceiling-mount ## **PLUS** - » GreenTech Technology - » Permanent magnet EC motor insures a precise, continuous control of operation - » Low energy consumption - » Fresh air with direct or mixed introduction - » Condensate drainage pump for height differences of up to 0.9 m - » Reduced installation and commissioning time #### AVAIL ABLE VERSIONS In addition to the 2 ABS grilles with adjustable fins it is available EFFETTO and EFFETTO AirClissi. EFFETTO, module for intake and diffusion air with the Coandă effect EFFETTO Airclissi, new design concept which integrates light with the Coandă effect air diffusion. **EFFETTO** ## Comfort, low noise, and efficiency in perfect harmony! The new series of hydronic cassette units ACQVARIA i, with inverter-controlled permanent magnet EC motor, consists of six models for 2-pipe systems (10-20-30-40-50-60) and five models for 4-pipe systems (10-30-35-40-60). The engineering of the unit makes it possible to develop up to 5 kW in the cooling mode in a standard 600x600 mm modular suspended ceiling and over 10 kW in the 860x860 mm modularity, with exceptionally low noise levels in the phases for maintaining interior comfort. The well-known advantages of EC motors are combined with GreenTech technology (in models 10, 20, 30 and 35), which integrates the inverter directly into the fan drive ACQVARIA i leverages the entire Galletti, MYCOMFORT, EVO, and TED10 microprocessor controller platform that incorporate sophisticated adjustment logics based on air temperature, air humidity, and water temperature. These benefits translate into greater accuracy in achieving and maintaining the desired comfort conditions through appropriate modulation of the fan speed as well as the reduction of noise emissions, which adapt to the actual thermal load. Lastly, electricity consumption is reduced by up to 75% in comparison to conventional fixed-speed AC motors. The suspended ceiling unit houses all the components, heat exchange coil, fan drive assembly, and condensate collection and drainage system. Its structure is designed for introducing fresh air into the space, mixing it with recovered air, and distributing the treated air from the cassette unit to adjacent rooms. The design and colour, RAL9003 or RAL9010, of the air intake and diffusion louvre guarantee optimal integration into the suspended ceiling panels. Easy access to the air filter for cleaning operations. The unit can be supplied complete with valves, including pressure-independent balancing and control valves, the use of which significantly reduces commissioning time. Neutral light EFFETTO + AirClissi #### MAIN COMPONENTS #### **Structure** Made of galvanised steel sheet with internal polyurethane foam coating and external flocked PES to guarantee heat and sound insulation. Fresh air can be introduced into the room directly through the unit due to the provision of connections for neutral or mixed introduction. Accessories are available for connection to ducts. There are systems on the unit for anchoring it to the ceiling. The electrical wiring is housed in a containment box and is easily accessible from the side for easy connection. #### Heat exchanger Copper pipe and high efficiency aluminium fins secured to the pipe by mechanical expansion. With at least two rows in the models for 2-pipe systems, it is available in the 2+1 configuration in the models for 4-pipe systems. The coil comes complete with manual air vent valves. On request, valves can be connected to the coil to regulate and balance the operation of the unit. #### Fan drive assembly Inverter-controlled permanent magnet EC electric motor (integrated in the Greentech models) directly connected to a centrifugal fan with backward-curving blades with profile optimised for stable operation at all speeds. #### Air filter Honey-comb polypropylene washable air filter, easily removable for maintenance operations. #### Condensate collection and drainage system Located under the heat exchanger, the main drip tray is made of polystyrene and is inserted inside the profiles optimised for the distribution of air in the space. The condensate drainage pump is able to raise the condensate up to $0.9\,$ m from the exit point from the unit. The operation of the pump is controlled by a float switch with three levels of action that activate it, stop it and, if the critical level is exceeded, stop the operation of the cassette unit fan and close the water valve. The supply is completed by the auxiliary water drip tray for the collection of condensate from the regulating valves. #### Louvre It is square shaped for the intake and diffusion of air in the space, and it is made of ABS, colour RAL9003 or RAL9010. The air intake louvre can be opened for access to the air filter. Air is diffused in the space through the 4 sides, each of which is equipped with an adjustable fin with suitable thermal insulation. Also available from today the new alluminium design module EFFETTO for intake and diffusion air with the Coandă effect. #### **Control mode** Galletti renews the fan coil control modes by integrating, on the EVO platform, the new EVO-2-TOUCH user interface and the NAVEL device for management with a smartphone. ## EVO-2-TOUCH is a user-friendly user interface with a 2.8" capacitive display with built-in temperature and humidity probes. #### NAVEL is the device paired with EVOBOARD that makes possible Wi-Fi or Bluetooth communication with a smartphone containing GALLETTI APP (available for iOS and Android) | ACCES: | Sories | |-----------------|---| | Electronic micr | oprocessor control panels with display | | DIST | MY COMFORT controller spacer for wall mounting | | EVO-2-TOUCH | 2.8" touch screen user interface for EVO control | | EVOBOARD | Circuit board for EVO control | | EVODISP | User interface with display for EVO controller | | EYNAVEL | Device for Wi-Fi or Bluetooth communication between EVOBOARD and smartphone | | MCLE | Microprocessor control with display MY COMFORT LARGE | | MCSUE | Humidity sensor for MY COMFORT (medium e large), EVO | | MCSWE | Water sensor for MYCOMFORT and EVO controllers | | Electronic micr | oprocessor control panels | | TED 10 | Electronic controller for BLDC fan equipped with inverter and ON/OFF valves 230 V | | | | | TED SWA | Water temperature sensor for TED controls | |-------------|---| | Valves | · | | PIC-AQ | PRESSURE-INDEPENDENT 2-way valves | | V2-AQ | 2-way valve, ON/OFF or MODULATING actuator, 230 V or 24 V power supply, hydraulio
kit, for model with 1 or 2 heat exchangers | | V3-AQ | 3-way valve, ON/OFF or MODULATING actuator, 230 V or 24 V power supply, hydraulio
kit, for model with 1 or 2 heat exchangers | | Plenum, air | intake modules, air inlet and outlet connectors and cabinets | | BAR | Spigot for introduction of mixed renewal air | | MOB | Cabinet for cassette | | PAR | Plenum for introduction of unmixed renewal air | | PMAA | Air outlet plenum | ## Cassette units ACQVARIA i ## RATED TECHNICAL DATA 2 PIPES | ACQVARIA i | | | AQ10QIB0 | | | | AQ20QIB0 | | | | AQ30QIB0 | | | | | |---------------------------|--------|-------|----------|------|------|------|----------|------|------|------|----------|------|------|------|--| | · | _ | | | min | med | max | | min | med | max | | min | med | max | | | Speed | | | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | | | Control voltage | | ٧ | 2,00 | 2,50 | 3,00 | 6,00 | 2,00 | 2,60 | 5,50 | 8,00 | 2,00 | 4,00 | 6,50 | 10,0 | | | Total cooling capacity | (1)(E) | kW | 1,62 | 2,15 | 2,35 | 3,21 | 1,62 | 2,19 | 3,40 | 4,47 | 1,54 | 2,76 | 3,95 | 5,23 | | | Sensible cooling capacity | (1)(E) | kW | 1,13 | 1,54 | 1,56 | 2,47 | 1,11 | 1,48 | 2,54 | 3,54 | 1,05 | 1,98 | 2,96 | 4,11 | | | FCEER class | (E) | | | A | | | | A | | | | | | | | | Water flow | (1) | l/h | 279 | 371 | 405 |
555 | 280 | 378 | 584 | 775 | 264 | 473 | 678 | 898 | | | Water pressure drop | (1)(E) | kPa | 6 | 10 | 10 | 16 | 4 | 7 | 15 | 22 | 3 | 9 | 18 | 29 | | | Heating capacity | (2)(E) | kW | 1,65 | 2,07 | 2,30 | 3,61 | 1,54 | 2,10 | 3,48 | 4,58 | 1,47 | 2,77 | 4,09 | 5,55 | | | FCCOP class | (E) | | | | A | | | A | | | | В | | | | | Water flow | (2) | I/h | 286 | 355 | 395 | 621 | 267 | 361 | 605 | 797 | 255 | 481 | 711 | 965 | | | Water pressure drop | (2)(E) | kPa | 5 | 7 | 8 | 12 | 3 | 6 | 13 | 21 | 3 | 8 | 16 | 27 | | | Rated air flow | | m³/h | 212 | 264 | 305 | 583 | 200 | 270 | 551 | 796 | 190 | 397 | 650 | 980 | | | Power input | (E) | W | 5 | 5 | 6 | 18 | 7 | 5 | 15 | 37 | 7 | 9 | 22 | 67 | | | Total sound power level | (3)(E) | dB(A) | 35 | 37 | 41 | 52 | 35 | 37 | 44 | 56 | 29 | 38 | 49 | 61 | | | ACQVARIA i | | | | AQ40 | QIB0 | | | AQ50 | QIB0 | | AQ60QIB0 | | | | |---------------------------|--------|-------|------|------|------|------|------|------|------|------|----------|------|------|------| | | | | min | med | max | | | min | med | max | | min | med | max | | Speed | | | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | | Control voltage | | ٧ | 2,00 | 3,00 | 5,00 | 10,0 | 2,00 | 3,00 | 5,00 | 8,00 | 2,00 | 4,00 | 6,50 | 10,0 | | Total cooling capacity | (1)(E) | kW | 4,80 | 5,36 | 6,39 | 8,27 | 5,17 | 5,92 | 7,26 | 9,01 | 5,26 | 6,70 | 8,37 | 10,5 | | Sensible cooling capacity | (1)(E) | kW | 3,80 | 3,92 | 4,75 | 6,35 | 3,66 | 4,24 | 5,31 | 6,78 | 3,69 | 4,80 | 6,15 | 7,97 | | FCEER class | (E) | | | | A | | A | | | | В | | | | | Water flow | (1) | l/h | 833 | 921 | 1097 | 1420 | 888 | 1015 | 1245 | 1545 | 902 | 1150 | 1436 | 1805 | | Water pressure drop | (1)(E) | kPa | 12 | 16 | 21 | 34 | 10 | 13 | 18 | 27 | 10 | 15 | 22 | 33 | | Heating capacity | (2)(E) | kW | 5,50 | 6,00 | 7,30 | 9,74 | 5,43 | 6,33 | 7,99 | 10,2 | 5,48 | 7,23 | 9,35 | 12,2 | | FCCOP class | (E) | | | | A | | В | | | | В | | | | | Water flow | (2) | l/h | 953 | 1043 | 1269 | 1692 | 944 | 1100 | 1390 | 1779 | 952 | 1257 | 1625 | 2116 | | Water pressure drop | (2)(E) | kPa | 3 | 16 | 23 | 38 | 9 | 12 | 19 | 29 | 9 | 15 | 23 | 36 | | Rated air flow | | m³/h | 843 | 978 | 1276 | 1916 | 724 | 864 | 1143 | 1554 | 710 | 976 | 1321 | 1831 | | Power input | (E) | W | 14 | 18 | 36 | 150 | 14 | 18 | 36 | 93 | 14 | 25 | 60 | 150 | | Total sound power level | (3)(E) | dB(A) | 35 | 39 | 45 | 57 | 35 | 39 | 48 | 53 | 36 | 43 | 50 | 58 | ⁽¹⁾ Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 45°C / 40°C, air temperature 20°C (3) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) ## RATED TECHNICAL DATA 4 PIPES | ACQVARIA i | | | | AQ10QIBB | | | | AQ30QIBB | | | | AQ35QIBB | | | | |---------------------------|--------|-------|------|----------|------|------|------|----------|------|------|------|----------|------|------|--| | | | | | min | med | max | | min | med | max | | min | med | max | | | Speed | | | | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | | | Control voltage | | ٧ | 2,00 | 3,50 | 4,50 | 6,00 | 2,00 | 2,50 | 4,80 | 10,0 | 2,00 | 4,00 | 6,50 | 10,0 | | | Total cooling capacity | (1)(E) | kW | 1,24 | 1,85 | 2,18 | 2,60 | 1,50 | 2,00 | 3,13 | 4,41 | 2,34 | 3,03 | 3,83 | 5,01 | | | Sensible cooling capacity | (1)(E) | kW | 0,92 | 1,46 | 1,79 | 2,23 | 1,05 | 1,15 | 2,25 | 3,58 | 1,49 | 2,17 | 2,79 | 3,98 | | | FCEER class DF | (E) | | A | | | A | | | | A | | | | | | | Water flow | (E) | l/h | 213 | 317 | 374 | 447 | 264 | 344 | 539 | 759 | 403 | 521 | 659 | 862 | | | Water pressure drop | (E) | kPa | 2 | 4 | 6 | 8 | 3 | 7 | 13 | 25 | 4 | 6 | 10 | 17 | | | Heating capacity | (2)(E) | kW | 2,03 | 2,90 | 3,34 | 3,86 | 2,00 | 3,70 | 4,26 | 5,51 | 1,92 | 2,39 | 2,88 | 3,43 | | | FCCOP class | (E) | | | | A | | A | | | | В | | | | | | Water flow | (2) | l/h | 178 | 254 | 292 | 338 | 178 | 318 | 367 | 474 | 165 | 206 | 248 | 295 | | | Water pressure drop | (2)(E) | kPa | 3 | 6 | 8 | 11 | 3 | 5 | 7 | 11 | 4 | 5 | 10 | 16 | | | Rated air flow | | m³/h | 199 | 356 | 460 | 610 | 190 | 242 | 454 | 982 | 195 | 395 | 643 | 982 | | | Power input | (E) | W | 7 | 7 | 8 | 18 | 7 | 5 | 12 | 67 | 7 | 9 | 22 | 67 | | | Total sound power level | (3)(E) | dB(A) | 28 | 35 | 40 | 48 | 30 | 36 | 46 | 61 | 29 | 38 | 49 | 61 | | | ACQVARIA i | | | | AQ40 | QIBB | | AQ60QIBB | | | | | |---------------------------|--------|-------|------|------|------|------|----------|------|------|------|--| | | | | min | med | max | | | min | med | max | | | Speed | | | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | | | Control voltage | | ٧ | 2,00 | 3,00 | 5,00 | 10,0 | 2,00 | 4,00 | 6,50 | 10,0 | | | Total cooling capacity | (1)(E) | kW | 4,61 | 5,34 | 6,61 | 9,07 | 4,70 | 6,09 | 7,62 | 9,50 | | | Sensible cooling capacity | (1)(E) | kW | 3,34 | 3,94 | 5,03 | 7,29 | 3,37 | 4,50 | 5,82 | 7,56 | | | FCEER class DF | (E) | | | | A | | В | | | | | | Water flow | (E) | l/h | 792 | 917 | 1135 | 1555 | 806 | 1045 | 1307 | 1631 | | | Water pressure drop | (E) | kPa | 12 | 15 | 22 | 37 | 11 | 17 | 25 | 37 | | | Heating capacity | (2)(E) | kW | 7,01 | 7,96 | 9,53 | 12,3 | 7,15 | 8,96 | 10,8 | 12,9 | | | FCCOP class | (E) | | | | A | | | | В | | | | Water flow | (2) | l/h | 613 | 697 | 834 | 1078 | 626 | 785 | 947 | 1133 | | | Water pressure drop | (2)(E) | kPa | 11 | 14 | 19 | 30 | 12 | 18 | 24 | 33 | | | Rated air flow | | m³/h | 687 | 841 | 1137 | 1823 | 673 | 956 | 1314 | 1823 | | | Power input | (E) | W | 14 | 18 | 36 | 150 | 14 | 25 | 60 | 150 | | | Total sound power level | (3)(E) | dB(A) | 35 | 39 | 45 | 57 | 36 | 43 | 50 | 58 | | ⁽¹⁾ Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 65°C / 55°C, air temperature 20°C (3) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) ## Cassette units ACQVARIA i ## **DIMENSIONAL DRAWINGS** ## ACQVARIA i 10-20-30 (for 2 pipes) - 10-30-35 (for 4 pipes) ### LEGEND | 1 | Electrical cable passage | |---|-----------------------------------| | 2 | Condensate discharge ø 10 | | 3 | Water outlet ø 1/2" female gas | | 4 | Water inlet ø 1/2" female gas | | 5 | Water outlet ø 1/2" DF female gas | | 6 | Water inlet ø 1/2" DF female gas | | | | NOTE It is possible to combine the EFFETTO and EFFETTO AirClissi module with the ACQVARIA i 60x60 cm cassette, for the dimensional drawing refer to page 85 | ACQVARIA i | ≗
kg | |--|----------------| | AQ10QIBO - AQ10QIBB | 23 + 2,5 | | AQ20QIBO - AQ30QIBO -
AQ30QIBB - AQ35QIBB | 24 + 2,5 | # ACQVARIA i 40, 50, 60 (Size 50 not available for dual coil version) 3 | Mod. | ≟
kg | |----------|----------------| | AQ40QIB0 | 42 + 5 | | AQ50QIB0 | 43 + 5 | | AQ60QIB0 | 43 + 5 | | AQ40QIBB | 42 + 5 | | AQ60QIBB | 43 + 5 | #### LEGEND | 1 | Electric box | |---|-----------------------------------| | 2 | Condensate discharge ø 10 | | 3 | Water outlet ø 3/4" female gas | | 4 | Water inlet ø 3/4" female gas | | 5 | Water inlet ø 1/2" DF female gas | | 6 | Water outlet ø 1/2" DF female gas | | | | ## High available head duct fancoil units ## **FHP 1 - 4 kW** ## FHP is new high available head duct fancoil units. The series offers an air flow range from 280 to 650 m³/h, with a total of 6 models featuring high-efficiency heat exchange coils. The fan coil unit is enhanced compared to traditional fan coils to ensure a useful static pressure of 50 and 60 Pa at medium and maximum speeds, respectively. It is classified as a ductable unit by Eurovent. It is a versatile fan coil that allows horizontal and vertical installation. In fact, FHP is equipped with a double condensate collection tray. With a height of only 22.4 cm, it is perfect for any type of false ceiling. FHP can be installed in offices, hospitality facilities, and light commercial spaces, as well as in residential buildings, where there are often stringent requirements related to noise levels and installation spaces. It comes with a plethora of factory-installable options and accessories, such as control panels, plenums, and fittings, to provide everything needed for the HVAC installer. installation installation **PLUS** - » PSU of 50 Pa at medium speed - » Compact dimensions - » Reversible water connections - » Compatible with zoning systems ## MAIN COMPONENTS #### Structure Built from galvanised steel sheet of extra thickness, heat and sound insulated by means of Class 1 self-extinguishing panels, complete with double drip tray for collecting condensate. #### **Heat exchanger** High efficiency heat exchanger made with copper piping and aluminium fins, provided with brass manifolds and vent valve. The water connections are reversible at the time of installation. On request it is possible to mount an additional heat exchanger for 4-pipe systems. #### **Electric motor** It is mounted on vibration dampers, with permanently activated capacitor and thermal protection of the windings, and is directly coupled with the fans. It is available as 3-speed version in order to meet all the specific needs of performance, quietness, and power consumption. #### **Fans** Double suction centrifugal fans, statically and dynamically balanced, manufactured from anti-static ABS, with blades having an airfoil section and offset modules. The fans are housed in a low-noise ABS volute with high-efficiency profile. #### Air filter Honey-comb polypropylene washable air filter, easily removable for maintenance operations. Filter with G2 filtration class also available. ## **Fan Coil FHP** #### CONFIGURATOR The models are completely configurable by selecting the version and the options. To the right is shown an example Version Field 1 2 3 4 5 6 7 8 9 10 11 ED05 C 0 L 0 1 0 0 6 0 0 of configuration. ED Product type FHP;
05 Size To verify the compatibility of the options, use the selection software or the price list. #### **CONFIGURATOR** - Version - C Recessed installation C - 2 Motor - 0 3-speed motor - 3 Main coil hydraulic side - Water connections on the left side - Water connections on the right Additional coil hydraulic side / heating element - Absent Water connections on the left side - Water connections on the right R - Valve - 0 - VKS 3 ways valve 230 V ON/OFF complete hydraulic kit KV 2 ways valve 230 V ON/OFF - Control panel - 0 Absent - EVOBOARD Circuit board - EVOBOARD circuit board + NAVEL Wi-Fi module Probes 0 - Absent - ADSENT SA Remote air probe for MYCOMFORT, LED503 and EVO SW Water probe for MYCOMFORT, LED503 and EVO SU Humidity probe for MYCOMFORT and EVO SA + SW Remote air and water probes for MYCOMFORT, LED503 and EVO - SA+SU Remote air and humidity probes for MYCOMFORT and EVO SA+SU+SW- Remote air, water, humidity probes for MYCOMFORT and EVO - Access ories Absent - 0 - BV Auxiliary drip tray BH Auxiliary drip tray GIVK Insulating shell - Filter - Standard filter air G2 Filter air **Release** 0 - 10 - 0 0 - Α Α | CONTR | OL PANELS | | | |-----------------|--|----------------|---| | Elecromechan | ical control panels | EVODISP | User interface with display for EVO controller | | CD | Recess wall-mounted speed switch | EYNAVEL | Device for Wi-Fi or Bluetooth communication between EVOBOARD and smartphone | | CDE | Wall mounted speed selector | MCBE | MYCOMFORT BASE electronic controller with display | | TC | Thermostat for minimum water temperature in heating mode (42 °C) | MCLE | Microprocessor control with display MY COMFORT LARGE | | Electronic mici | oprocessor control panels with display | MCME | MYCOMFORT MEDIUM electronic controller with display | | СОВ | Finishing plate for LED 503 controller, RAL9005 black | MCSUE | Humidity sensor for MY COMFORT (medium e large), EVO | | COG | Finishing plate for LED 503 controller, RAL7031 grey | MCSWE | Sonda acqua per comandi MY COMFORT , EVO | | COW | Finishing plate for LED 503 controller, RAL9003 white | Electronic mic | croprocessor control panels | | DIST | MY COMFORT controller spacer for wall mounting | TED 2T | Electronic controller for AC fan control and one ON/OFF 230 V valve | | EVO-2-TOUCH | 2.8" touch screen user interface for EVO control | TED 4T | Electronic controller for AC fan control and two ON/OFF 230 V valves | | EVOBOARD | Circuit board for EVO control | TED SWA | Water temperature sensor for TED controls | | | | | | | ACCE: | SSORIES | | | |---------------|---|--------------|--| | Auxiliary wa | ater drip trays, insulating shell, condensate drainage pump | RA90 | Angular inlet connector | | BH | Auxiliary water drip tray for horizontal installation fan coil units | RAD | Straight inlet connector | | BV | Auxiliary water drip tray for vertical installation fan coil units | RADC | Air inlet plenum with circular collars | | KSC | Condensate drainage pump kit | RM90 | Angular outlet connector | | Power inter | face and regulating louver controllers | RM90C | Angular outlet insulated connector | | CSD | Recess mounted controller for opening and closing the SM motor-driven regulating | RMCD | Straight outlet insulated connector | | | louver | RMCD C | Air outlet plenum with circular collars | | Base and en | nclosure elements | RMD | Straight outlet connector | | D | Support elements | External air | intake louvers | | | d outlet grilles | S | Manual external air intake louver | | GE | Aluminium external air intake grille with subframe | SM | Motor-driven louver, with motor on the right with transformer | | GEF | Aluminium external air intake grille with subframe and air filter | SM | Motor-driven louver, with motor on the left with transformer | | GM | Aluminium air outlet grille with 2-row fins and subframe | SMC | Motor driven louver, with motor on the right, with transformer | | RGC | Plenum with circular collars for air outlet grille | SMC | Motor driven louver, with motor on the left, with transformer | | | ater drip trays, insulating shell, condensate drainage pump | Valves | | | GIVKL | Insulating shell for VKS valve, water connections on the left | VKDF | 3-way valve, ON/OFF actuator, 230 V power suppply, complete hydraulic kit for | | GIVKR | Insulating shell for VKS valve, water connections on the right | VNDF | additional heat exchanger | | Power inter | face and regulating louver controllers | VKS | 3-way valve, ON/OFF actuator, 1230 V power supply, complete hydraulic kit for main | | KP | Power interface for connecting in parallel up to 4 fun coil units to the one controller | | heat exchanger | | Electrical he | eating elements | KV | 2-way valve, ON/OFF actuator, hydraulic kit on water connection side for main heat | | RE | Heating element with installation kit, relay box and safety devices | | exchanger | | Plenum and | l connectors | KVDF | 2-way valve, ON/OFF actuator, 230 V power supply, hydraulic kit on water connection
side for main and additional heat exchanger | ## 2 PIPES - RATED TECHNICAL DATA | FHP | | | | 3 | | | 4 | | 5 | | | 6 | | | | |------------------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------|--| | Speed | | | min | med | max | | | Declared speed | | | | | | | | 1, | 2,3 | | | | | | | | Rated air flow | | m³/h | 190 | 220 | 280 | 190 | 220 | 280 | 270 | 370 | 470 | 270 | 370 | 470 | | | Available static pressure | | Pa | 35 | 50 | 60 | 35 | 50 | 60 | 28 | 50 | 60 | 28 | 50 | 60 | | | Power input | (E) | W | 57 | 65 | 100 | 57 | 65 | 100 | 47 | 63 | 114 | 45 | 60 | 110 | | | Total cooling capacity | (1)(E) | kW | 0,97 | 1,09 | 1,17 | 1,19 | 1,31 | 1,55 | 1,52 | 2,24 | 2,39 | 1,76 | 2,64 | 3,03 | | | Sensible cooling capacity | (1)(E) | kW | 0,80 | 0,90 | 0,99 | 0,84 | 0,96 | 1,14 | 1,11 | 1,54 | 1,72 | 1,35 | 1,98 | 2,38 | | | FCEER class | (E) | | | E | | | E | | | D | | | D | | | | Water flow | (1) | l/h | 167 | 187 | 202 | 205 | 225 | 267 | 262 | 385 | 411 | 303 | 454 | 521 | | | Water pressure drop | (1)(E) | kPa | 6 | 7 | 9 | 4 | 5 | 6 | 8 | 13 | 13 | 8 | 11 | 13 | | | Heating capacity | (2)(E) | kW | 1,12 | 1,25 | 1,50 | 1,20 | 1,45 | 1,75 | 1,86 | 2,39 | 2,75 | 2,04 | 2,68 | 3,11 | | | FCCOP class | (E) | | | E | | | E | | | D | | | C | | | | Water flow | (2) | l/h | 192 | 216 | 258 | 206 | 249 | 300 | 320 | 411 | 473 | 350 | 461 | 535 | | | Water pressure drop | (2)(E) | kPa | 6 | 7 | 9 | 4 | 5 | 6 | 8 | 12 | 14 | 8 | 11 | 14 | | | Total sound power level | (3)(E) | dB(A) | 48 | 53 | 55 | 48 | 53 | 55 | 48 | 55 | 58 | 48 | 55 | 58 | | | Inlet + radiated sound power level | (3) | dB(A) | 46 | 51 | 53 | 46 | 51 | 53 | 46 | 53 | 56 | 46 | 53 | 56 | | | Outlet sound power level | (3) | dB(A) | 45 | 50 | 52 | 45 | 50 | 52 | 45 | 52 | 55 | 45 | 52 | 55 | | | FHP | | | | 8 | | 9 | | | | | |------------------------------------|--------|-------|-------|------|------|------|------|------|--|--| | Speed | | | min | med | max | min | med | max | | | | Declared speed | | | 1,2,3 | | | | | | | | | Rated air flow | | m³/h | 370 | 480 | 500 | 440 | 530 | 650 | | | | Available static pressure | | Pa | 28 | 50 | 60 | 35 | 50 | 60 | | | | Power input | (E) | W | 53 | 85 | 120 | 60 | 75 | 120 | | | | Total cooling capacity | (1)(E) | kW | 2,62 | 3,40 | 3,52 | 3,07 | 3,74 | 4,20 | | | | Sensible cooling capacity | (1)(E) | kW | 1,87 | 2,37 | 2,45 | 2,19 | 2,56 | 3,04 | | | | FCEER class | | | | | C | | | | | | | Water flow | (1) | l/h | 451 | 585 | 605 | 528 | 644 | 722 | | | | Water pressure drop | (1)(E) | kPa | 11 | 17 | 18 | 15 | 20 | 23 | | | | Heating capacity | (2)(E) | kW | 2,74 | 3,53 | 3,64 | 3,18 | 3,83 | 4,52 | | | | FCCOP class | (E) | | C | | | | | | | | | Water flow | (2) | I/h | 472 | 607 | 627 | 547 | 659 | 777 | | | | Water pressure drop | (2)(E) | kPa | 12 | 18 | 19 | 15 | 20 | 23 | | | | Total sound power level | (3)(E) | dB(A) | 49 | 56 | 58 | 52 | 57 | 59 | | | | Inlet + radiated sound power level | (3) | dB(A) | 47 | 54 | 56 | 50 | 55 | 57 | | | | Outlet sound power level | (3) | dB(A) | 46 | 53 | 55 | 49 | 54 | 56 | | | ⁽¹⁾ Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 45°C / 40°C, air temperature 20°C (3) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) ## 4 PIPES - RATED TECHNICAL DATA | FHP | | | | 3 | | 4 | | | | 5 | | 6 | | | | |------------------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------|--| | Speed | | | min | med | max | | | Declared speed | | | | | | | | 1, | 2,3 | | | | | | | | Rated air flow | (E) | m³/h | 180 | 210 | 270 | 180 | 210 | 270 | 260 | 360 | 450 | 260 | 360 | 450 | | | Available static pressure | (E) | Pa | 35 | 50 | 58 | 35 | 50 | 58 | 28 | 50 | 58 | 28 | 50 | 58 | | | Power input | (E) | W | 57 | 65 | 100 | 57 | 65 | 100 | 47 | 63 | 114 | 45 | 60 | 110 | | | Total cooling capacity | (1)(E) | kW | 0,94 | 1,05 | 1,14 | 1,15 | 1,27 | 1,50 | 1,48 | 2,17 | 2,32 | 1,71 | 2,56 | 2,94 | | | Sensible cooling capacity | (1)(E) | kW | 0,78 | 0,87 | 0,96 | 0,82 | 0,93 | 1,11 | 1,07 | 1,49 | 1,67 | 1,31 | 1,92 | 2,31 | | | FCEER class | (E) | | | E | | | E | | | D | | | D | | | | Water flow | (2) | l/h | 162 | 181 | 196 | 199 | 219 | 259 | 254 | 374 | 398 | 294 | 440 | 505 | | | Water pressure drop | (2)(E) | kPa | 6 | 7 | 9 | 4 | 5 | 6 | 8 | 13 | 13 | 8 | 11 | 13 | | | Heating capacity | (3)(E) | kW | 1,22 | 1,38 |
1,58 | 1,22 | 1,38 | 1,58 | 1,81 | 2,22 | 2,55 | 1,81 | 2,22 | 2,55 | | | FCCOP class | (E) | | | E | | | E | | D | | | D | | | | | Waterflow | (3) | l/h | 210 | 237 | 272 | 210 | 237 | 272 | 311 | 382 | 439 | 311 | 382 | 439 | | | Water pressure drop | (3)(E) | kPa | 4 | 5 | 7 | 4 | 5 | 7 | 2 | 3 | 3 | 2 | 3 | 3 | | | Total sound power level | (4) | dB(A) | 48 | 53 | 55 | 48 | 53 | 55 | 48 | 55 | 58 | 48 | 55 | 58 | | | Inlet + radiated sound power level | (4)(E) | dB(A) | 46 | 51 | 53 | 46 | 51 | 53 | 46 | 53 | 56 | 46 | 53 | 56 | | | Outlet sound power level | (4)(E) | dB(A) | 45 | 50 | 52 | 45 | 50 | 52 | 45 | 52 | 55 | 45 | 52 | 55 | | | FHP | | | | 8 | | 9 | | | | | |------------------------------------|--------|-------|-------|------|------|------|------|------|--|--| | Speed | | | min | med | max | min | med | max | | | | Declared speed | | | 1,2,3 | | | | | | | | | Rated air flow | (E) | m³/h | 360 | 460 | 480 | 420 | 510 | 630 | | | | Available static pressure | (E) | Pa | 28 | 50 | 58 | 35 | 50 | 58 | | | | Power input | (E) | W | 53 | 85 | 120 | 60 | 75 | 120 | | | | Total cooling capacity | (1)(E) | kW | 2,54 | 3,30 | 3,41 | 2,98 | 3,63 | 4,07 | | | | Sensible cooling capacity | (1)(E) | kW | 1,82 | 2,30 | 2,37 | 2,13 | 2,49 | 2,95 | | | | FCEER class | (E) | | | | | C | | | | | | Water flow | (2) | l/h | 437 | 567 | 587 | 512 | 625 | 700 | | | | Water pressure drop | (2)(E) | kPa | 11 | 17 | 18 | 15 | 20 | 23 | | | | Heating capacity | (3)(E) | kW | 2,73 | 3,15 | 3,22 | 3,00 | 3,35 | 3,84 | | | | FCCOP class | (E) | | C | | | | | | | | | Water flow | (3) | l/h | 470 | 542 | 554 | 516 | 576 | 660 | | | | Water pressure drop | (3)(E) | kPa | 3 | 4 | 5 | 4 | 5 | 7 | | | | Total sound power level | (4) | dB(A) | 49 | 56 | 58 | 52 | 57 | 59 | | | | Inlet + radiated sound power level | (4)(E) | dB(A) | 47 | 54 | 56 | 50 | 55 | 57 | | | | Outlet sound power level | (4)(E) | dB(A) | 46 | 53 | 55 | 49 | 54 | 56 | | | ⁽¹⁾ Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 7°C/ 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) (3) Water temperature 65°C/ 55°C, air temperature 20°C (4) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) | FHP | A | В | C | D | E | F | G | Н | L | M | N | Р | Q | R | S | T | U | ٧ | Y | 4 | Å | |-------|------|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|----|-----|-----|-----|-----|-----|-----|----|-----|----| | rnr | mm | kg | | 3 - 4 | 584 | 224 | 498 | 51 | 458 | 163 | 263 | 149 | 198 | 187 | 335 | 99 | 189 | 486 | 208 | 198 | 436 | 464 | 61 | 1/2 | 18 | | 5 - 6 | 794 | 224 | 708 | 51 | 458 | 163 | 263 | 149 | 198 | 187 | 335 | 99 | 189 | 486 | 208 | 198 | 646 | 674 | 61 | 1/2 | 23 | | 8 - 9 | 1004 | 224 | 918 | 51 | 458 | 163 | 263 | 149 | 198 | 187 | 335 | 99 | 189 | 486 | 208 | 198 | 856 | 884 | 61 | 1/2 | 27 | ## **Duct units DUCTIMAX and DUCTIMAX i** ## Wired plenum with motorized dampers ## **DMP** 2 pipes 4 pipe **PLUS** - » Independent control of the air set point in each zone - » Sizing of Ductimax according to the actual simultaneous usage - » Wireless connection between controls and control unit - » Automatic configuration of command parameters - » Thermally and acoustically insulated PAL plenums, 85% lighter than using galvanized sheet metal. ## The Importance of Zoning In recent years, it has become increasingly evident that energy savings are not only achieved through the introduction of components, systems, or installations aimed at improving mere energy performance but also through other factors such as the efficient and effective control of their correct use. It is very important that the building's energy consumption is based on actual needs, taking into account the real occupancy of the premises by people. According to this philosophy, Galletti has introduced DMP, the wired plenum with a control unit and motorized dampers for advanced air management in ducted air conditioning systems. Thanks to the integrated control unit, it is possible to precisely and automatically control the opening and closing of the dampers, optimizing the distribution of air in the different zones of the building. This configuration improves energy efficiency, ensures customized comfort, and reduces installation times, making it ideal for complex and high-performance systems. In fact, most of the electrical connections are already made at the factory on the plenum, and thanks to the radio wave touch screen controls, no wiring to the control unit is necessary. The setting of operating parameters is automatic and instantaneous. ### MAIN COMPONENTS ### CONTROL PANELS #### RC1M master touch screen control with radio waves Graphic interface with 4.3" screen and metallic and glass finishes, radio communication. - Radio communication without wiring (range 50 meters). - Control of operating modes (hot, cold). - Selection of room temperature in 0.5 $^{\circ}\text{C}$ intervals. - Zone On-Off. - System Stop (MASTER). - Temperature and fan speed control of the unit. - Monitoring of ambient temperature and relative humidity per zone. - SLEEP Function. - Time schedules - Powered by a rechargeable lithium-ion battery with USB cable, includes mounting base and a Micro USB to USB cable. #### RC1S slave touch screen control with radio waves - 1.3" OLED screen, backlit capacitive buttons, and metallic color finishes. - Radio communication without wiring (range 50 meters) - Selection of nominal temperature in 0.5°C intervals. - Zone On-Off. - Reading of ambient temperature and relative humidity of the zone. - SLEEP Function. - Powered by a rechargeable lithium-ion battery with USB cable. ## **Duct units DUCTIMAX and DUCTIMAX i** ## COMPATIBILITY TABLE BETWEEN: | Ductimax | Ductimay | i and | DMD | nlanum | |----------|----------|-------|-------|--------| | Ducumax | Ducumax | i anu | DIVIP | pienum | | Compatibility | Galletti code | Description | Galletti code | Description | |---|---------------|---|---------------|---| | Ductimax frame 1÷2
DM13-DM14-DM23-DM24 | DMP2MD1 | Plenum with 2 motorized dampers + electronic board for damper management and radio antenna + fan coil interface | EYRC1M1S | 2 touch screen radio wave commands (1 master, 1 slave) | | Ductimax frame 3÷4
DM33-DM34-DM43-DM44 | DMP3MD3 | Plenum with 3 motorized dampers + electronic board for damper management and radio antenna + fan coil interface | EYRC1M2S | 3 touch screen radio wave commands (1 master, 2 slaves) | | Ductimax frame 5÷6
DM53-DM54-DM63-DM64 | DMP4MD5 | Plenum with 4 motorized dampers + electronic board for damper management and radio antenna + fan coil interface | EYRC1M3S | 4 touch screen radio wave commands (1 master, 3 slaves) | ## DIMENSIONAL DRAWINGS ## DMP3MD3 #### LEGEND #### Available for Ductimax frame $3 \div 4$ (DM 33-34); (DM 43-44) **DMP3MD3:** Plenum with 3 motorized dampers + electronic board for damper management and radio antenna + fan coil interface EYRC1M2S: 3 touch screen radio wave commands (1 master, 2 slaves) ## DMP4MD5 #### LEGEND #### Available for Ductimax frame 5÷6 (DM 53-54); (DM 63-64) **DMP4MD5:** Plenum with 4 motorized dampers + electronic board for damper management and radio antenna + fan coil interface **EYRC1M3S:** 4 touch screen radio wave commands (1 master, 3 slaves) ## Medium available head duct units ## **DUCTIMAX 2 - 8 kW** # recessed ceiling installations Performance and compactness in The DUCTIMAX ducted unit has been conceived for air conditioning interiors where the installation of highperformance medium head units with reduced overall dimensions is required. The range features 12 models with air flows of from 300 to 1200 m3/h. The heat exchanger enables DUCTIMAX to be used under a whole variety of operating conditions. The weight-bearing structure in fact houses a 3- or 4-rows exchanger which can be combined with an additional 1 or 2-rows exchanger (on request) for exceptional performance even with low temperature differentials. The heat exchangers can be optimized for centralized applications such as district cooling. DUCTIMAX is designed for horizontal ceiling installation. The main condensate drip tray is situated inside the structure of the unit and is at a positive pressure relative to the drain outlet to facilitate condensate drainage. A wide range of wall-mounted controllers is available, including controllers of an electromechanical type and microprocessor controllers with display. Heating elements complete with safety devices are available to supplement the hydronic system. ## **PLUS** - » Multi speed motor - » Heat exchanger up to 4 rows - » Reversible water connections - » ABS centrifugal fans #### **COMPATIBLE WITH PLENUM DMP** The bearing structure allows to combine a large range of accessories in suction and air delivery in order to obtain the optimized unit configuration. ### **AVAILABLE VERSIONS** DMXXD0L0...A Units for 2 pipes systems DMXXD0LL...A Unit for 4-pipe systems equipped with an additional 1-row exchanger for the hot water circuit DMXXD0LM...A Unit for 4-pipe systems equipped with an additional 2-row exchanger for the hot water circuit (On request) #### MAIN COMPONENTS #### **Structure** Built from galvanised steel sheet, heat and sound insulated by means of Class 1 self-extinguishing panels. Reduced height to facilitate installation in a horizontal position in a false ceiling. The structure incorporates a drip tray and condensate drain outlet. #### Heat exchanger High efficiency 3 and 4 rows heat exchanger made with copper piping and aluminium fins blocked to pipings by mechanical expansion, provided with brass manifolds and air
vent valve. The heat exchanger usually comes with water connections mounted on the left, but it can be turned by 180°. High-efficiency heat exchangers optimized for district cooling applications are available on request. #### **Electric motor** asynchronous Single-phase multi-speed electric motor with permanently connected capacitor and thermal protector, mounted on vibration-damping supports. #### **Fans** Double suction centrifugal fans made with ABS or aluminium, with statically and dynamically balanced forward-curving blades, directly coupled to the electric motor. #### Air filter Washable air filter, made of acrylic fibre, filtration class G2, G3 or G4, applied on the air intake; may be pulled out from below. | CONFIGURATOR | | | | | | | | | | | | | | | |--|---------|-------|---|---|---|---|---|---|---|---|---|----|----|--| | The models are completely configurable by selecting the | Version | Field | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | | version and the options. To the right is shown an example of configuration | DM44 | | D | 1 | L | 0 | 1 | E | 0 | 0 | 3 | 0 | Α | | To verify the compatibility of the options, use the selection software or the price list. #### **CONFIGURATOR** - Version - **Ducted version** - Motor - 0 3-speed motor - 7-speed motor - BLDC motor - 6 speed motor - Main coil hydraulic side Water connections on the left side - Water connections on the right Additional coil hydraulic side / heating element - RE Electrical heating elements - Water connections on the left side Water connections on the right - Valve 0 - Absent - VKS 3 ways valve 230 V ON/OFF complete hydraulic kit - VKS 2 3 ways valve 230 V 0N/OFF VKMS 3 ways valve 24 V MODULATING complete hydraulic kit KVM 2 ways valve 24 V MODULATING VKS24 3 way valve 24 V 0N/OFF complete hydraulic kit - KV24 2 way valve 24 V 0N/0FF - Control panel - Absent - EVOBOARD Circuit board - EVOBOARD circuit board + NAVEL Wi-Fi module - **Probes** - Absent - SA Remote air probe for MYCOMFORT, LED503 and EVO - SW Water probe for MYCOMFORT, LED503 and EVO SU Humidity probe for MYCOMFORT and EVO SA+SW Remote air and water probes for MYCOMFORT, LED503 and EVO - SA+SU Remote air and humidity probes for MYCOMFORT and EVO - SA+SU+SW- Remote air, water, humidity probes for MYCOMFORT and EVO - SA Remote air probe for TED - SW Water probe for TED SA + SW Air and water probes for TED Accessories D - Absent - BH Auxiliary drip tray - Filter 2 - G2 Filter - 3 G3 filter 10 Release - 0 0 | ACCESS | SORIES | |-------------------|---| | Elecromechani | cal control panels | | CD | Recess wall-mounted speed switch | | CDE | Wall mounted speed selector | | TC | Thermostat for minimum water temperature in heating mode (42 °C) | | Electronic micro | oprocessor control panels with display | | COB | Finishing plate for LED 503 controller, RAL9005 black | | COG | Finishing plate for LED 503 controller, RAL7031 grey | | COW | Finishing plate for LED 503 controller, RAL9003 white | | DIST | MY COMFORT controller spacer for wall mounting | | EVO-2-TOUCH | 2.8" touch screen user interface for EVO control | | EVOBOARD | Circuit board for EVO control | | EVODISP | User interface with display for EVO controller | | EYNAVEL | Device for Wi-Fi or Bluetooth communication between EVOBOARD and smartphone | | LED503 | Recessed wall-mounted electronic display controller LED 503 | | MCBE | MYCOMFORT BASE electronic controller with display | | MCLE | Microprocessor control with display MY COMFORT LARGE | | MCME | MYCOMFORT MEDIUM electronic controller with display | | MCSUE | Humidity sensor for MY COMFORT (medium e large), EVO | | MCSWE | Water sensor for MYCOMFORT and EVO controllers | | Electronic micro | oprocessor control panels | | TED 2T | Electronic controller for AC fan control and one ON/OFF 230 V valve | | TED 4T | Electronic controller for AC fan control and two ON/OFF 230 V valves | | TED SWA | Water temperature sensor for TED controls | | Power interfac | e and regulating louver controllers | | KP | Power interface for connecting in parallel up to 4 fun coil units to the one controller | | Electrical heati | | | RE | Heating element with installation kit, relay box and safety devices | | Air inlet and ou | | | GA | Aluminium air intake grille, with frame | | GM | Aluminium air outlet grille with 2-row fins and subframe | | Valves | | | C 4 D C D V 2 E 1 | Α. | | V2VDF+STD | 2-way valves, ON/OFF or MUDULATING actuator, 230 V or 24 V power supply, hydraulic kit, for main and additional heat exchanger | |----------------|--| | V2VSTD | 2-way valve, ON/OFF or MODULATING actuator, 230 V or 24 V power supply, hydraulic kit, for main heat exchanger | | V3VDF | 3-way valves, ON/OFF or MODULATING actuator, 230 V or 24 V power supply, hydraulic kit, for additional heat exchanger | | V3VSTD | 2-way valves, ON/OFF or MODULATING actuator, 230 V or 24 V power supply, hydraulic kit, for main heat exchanger | | VPIC | 2-way valves pressure independent, ON/OFF actuator, 230 V power supply, hydraulic kit, for main heat exchanger | | Plenum, air in | take modules, air inlet and outlet connectors and cabinets | | MAF90 | Air intake module with G3 flat air filter | | MAFO | Air intake module with G4 undulated air filter | | MAF090 | Air intake module with G4 flat air filter | | PAF | Intake and delivery plenum, not insulated, with spigot Ø 200 mm | | PMA | Intake and delivery plenum, not insulated, with spigot Ø 200 mm | | PMAC | Intake and delivery plenum, insulated, with spigot Ø 200 mm | | R90 | 90° uninsulated air inlet/outlet connector | | R90C | 90° uninsulated air inlet/outlet connector | | RD | Straight uninsulated air inlet/outlet connector | | RDC | Straight insulated air inlet/outlet connector | | Flexible ducts | - caps | | TFA | Not insulated flexible ducts, Ø 200 mm (6 m lenght undivisible) | | TFM | Insulated flexible ducts, Ø 200 mm (6 m lenght undivisible) | | TP | Plastic cap ∅ 200 mm | | | utlet plenum box | | CA | Air Inlet plenum box with double row grille | | CAF | Air Inlet plenum box with double row grille 300 x 600 mm and filter G2 | | CM | Insulated air outlet plenum box with grille | | Accessories | | | KSC | Condensate drainage pump kit | | VRC | Auxiliary water drip tray | ## **Duct unit DUCTIMAX** ### RATED TECHNICAL DATA 2 PIPES | DUCTIMAX | | | | 13 | | | 14 | | | 23 | | | 24 | | |------------------------------------|--------|-------|------|-------|------|------|-------|------|------|-------|------|------|-------|------| | Speed | | | min | med | max | | Declared speed | | | | 2,5,7 | | | 2,5,7 | | | 1,5,7 | | | 1,5,7 | | | Rated air flow | (E) | m³/h | 109 | 246 | 276 | 109 | 246 | 276 | 171 | 275 | 341 | 171 | 275 | 341 | | Available static pressure | (E) | Pa | 10 | 50 | 63 | 10 | 50 | 63 | 19 | 50 | 77 | 19 | 50 | 77 | | Power input | (E) | W | 24 | 57 | 82 | 24 | 57 | 82 | 34 | 69 | 106 | 34 | 69 | 106 | | Total cooling capacity | (1)(E) | kW | 0,92 | 1,72 | 1,90 | 0,95 | 1,91 | 2,11 | 1,27 | 1,90 | 2,27 | 1,36 | 2,11 | 2,53 | | Sensible cooling capacity | (1)(E) | kW | 0,61 | 1,21 | 1,34 | 0,63 | 1,30 | 1,43 | 0,89 | 1,34 | 1,59 | 0,93 | 1,44 | 1,72 | | FCEER class | (E) | | | | | | | | D | | | | | | | Water flow | (2) | l/h | 160 | 306 | 340 | 167 | 337 | 375 | 222 | 339 | 408 | 239 | 374 | 453 | | Water pressure drop | (2)(E) | kPa | 2 | 5 | 6 | 2 | 7 | 8 | 3 | 6 | 8 | 4 | 8 | 12 | | Heating capacity | (3)(E) | kW | 0,88 | 1,81 | 1,99 | 0,91 | 1,98 | 2,21 | 1,33 | 1,98 | 2,35 | 1,40 | 2,20 | 2,68 | | FCCOP class | (E) | | | | | | | | D | | | | | | | Water flow | (3) | l/h | 153 | 315 | 346 | 158 | 345 | 384 | 231 | 345 | 408 | 244 | 382 | 466 | | Water pressure drop | (3)(E) | kPa | 1 | 4 | 5 | 2 | 6 | 7 | 2 | 5 | 7 | 3 | 7 | 10 | | Standard coil - number of rows | | | | 3 | | | 4 | | | 3 | | | 4 | | | Total sound power level | (4) | dB(A) | 32 | 49 | 29 | 28 | 49 | 52 | 39 | 50 | 54 | 39 | 50 | 54 | | Inlet + radiated sound power level | (4)(E) | dB(A) | 30 | 47 | 50 | 26 | 47 | 50 | 37 | 48 | 52 | 37 | 48 | 52 | | Outlet sound power level | (4)(E) | dB(A) | 29 | 46 | 49 | 25 | 46 | 49 | 37 | 47 | 51 | 36 | 47 | 51 | | DUCTIMAX | | | | 33 | | | 34 | | | 43 | | | 44 | | |------------------------------------|--------|-------|------|-------|------|------|-------|------|------|-------|------|------|-------|------| | Speed | | | min | med | max | | Declared speed | | | | 1,6,7 | | | 1,6,7 | | | 1,4,7 | | | 1,4,7 | | | Rated air flow | (E) | m³/h | 195 | 360 | 402 | 195 | 360 | 402 | 305 | 532 | 652 | 305 | 532 | 652 | | Available static pressure | (E) | Pa | 19 | 50 | 63 | 19 | 50 | 63 | 17 | 50 | 68 | 17 | 50 | 75 | | Power input | (E) | W | 34 | 85 | 106 | 34 | 85 | 106 | 76 | 143 | 192 | 76 | 143 | 192 | | Total cooling capacity | (1)(E) | kW | 1,44 | 2,28 | 2,51 | 1,57 | 2,69 | 2,96 | 1,92 | 3,17 | 3,68 | 2,29 | 3,78 | 4,45 | | Sensible cooling capacity | (1)(E) | kW | 1,01 | 1,69 | 1,86 | 1,07 | 1,86 | 2,03 | 1,42 | 2,39 | 2,81 | 1,57 | 2,61 | 3,08 | | FCEER class | (E) | | | D | | | D | | | E | | | D | | | Water flow | (2) | I/h | 252 | 406 | 449 | 274 | 476 | 527 | 343 | 568 | 664 | 407 | 673 | 798 | | Water pressure drop | (2)(E) | kPa | 2 | 5 | 5 | 3 | 7 | 9 | 3 | 8 | 11 | 6 | 14 | 18 | | Heating capacity | (3)(E) | kW | 1,57 | 2,70 | 2,96 | 1,59 | 2,80 | 3,10 | 2,35 | 3,71 | 4,31 | 2,41 | 3,95 | 4,68 | | FCCOP class | (E) | | | | | | | | D | | | | | | | Water flow | (3) | l/h | 272 | 470 | 515 | 276 | 488 | 538 | 408 | 644 | 749 | 419 | 687 | 814 | | Water pressure drop | (3)(E) | kPa | 2 | 5 | 6 | 2 | 6 | 8 | 4 | 9 | 11 | 5 | 12 | 16 | | Standard coil - number of rows | | | | 3 | | | 4 | | | 3 | | | 4 | | | Total sound power level | (4) | dB(A) | 39 |
50 | 54 | 39 | 50 | 54 | 38 | 52 | 58 | 38 | 52 | 58 | | Inlet + radiated sound power level | (4)(E) | dB(A) | 37 | 48 | 52 | 37 | 48 | 52 | 36 | 53 | 56 | 36 | 50 | 56 | | Outlet sound power level | (4)(E) | dB(A) | 36 | 47 | 51 | 36 | 47 | 51 | 35 | 49 | 55 | 35 | 49 | 55 | | DUCTIMAX | | | | 53 | | | 54 | | | 63 | | | 64 | | |------------------------------------|--------|-------|------|-------|------|------|-------|------|------|-------|------|------|-------|------| | Speed | · | | min | med | max | | Declared speed | | | | 1,6,7 | | | 1,6,7 | | | 5,6,7 | | | 5,6,7 | | | Rated air flow | (E) | m³/h | 333 | 687 | 760 | 333 | 687 | 760 | 1050 | 1163 | 1289 | 1050 | 1163 | 1289 | | Available static pressure | (E) | Pa | 12 | 50 | 61 | 12 | 50 | 61 | 40 | 50 | 53 | 40 | 50 | 60 | | Power input | (E) | W | 76 | 167 | 192 | 76 | 167 | 192 | 235 | 280 | 332 | 235 | 280 | 332 | | Total cooling capacity | (1)(E) | kW | 2,22 | 4,22 | 4,63 | 2,44 | 4,79 | 5,23 | 6,15 | 6,66 | 7,21 | 6,91 | 7,49 | 8,12 | | Sensible cooling capacity | (1)(E) | kW | 1,60 | 3,09 | 3,39 | 1,70 | 3,33 | 3,64 | 4,51 | 4,88 | 5,29 | 4,83 | 5,23 | 5,67 | | FCEER class | (E) | | | | | | | | D | | | | | | | Water flow | (2) | l/h | 394 | 753 | 828 | 432 | 850 | 930 | 1095 | 1191 | 1295 | 1225 | 1333 | 1448 | | Water pressure drop | (2)(E) | kPa | 2 | 7 | 8 | 3 | 10 | 12 | 13 | 16 | 18 | 20 | 23 | 26 | | Heating capacity | (3)(E) | kW | 2,54 | 4,76 | 5,17 | 2,63 | 5,03 | 5,49 | 6,68 | 7,22 | 7,80 | 7,18 | 7,80 | 8,46 | | FCCOP class | (E) | | | | | | | | D | | | | | | | Water flow | (3) | l/h | 442 | 827 | 898 | 457 | 875 | 955 | 1162 | 1256 | 1357 | 1248 | 1356 | 1472 | | Water pressure drop | (3)(E) | kPa | 2 | 7 | 8 | 3 | 9 | 11 | 12 | 14 | 16 | 17 | 20 | 23 | | Standard coil - number of rows | | | | 3 | | | 4 | | | 3 | | | 4 | | | Total sound power level | (4) | dB(A) | 38 | 55 | 58 | 38 | 55 | 58 | 61 | 63 | 69 | 61 | 63 | 69 | | Inlet + radiated sound power level | (4)(E) | dB(A) | 36 | 53 | 56 | 36 | 53 | 56 | 59 | 61 | 67 | 59 | 61 | 67 | | Outlet sound power level | (4)(E) | dB(A) | 35 | 52 | 55 | 35 | 53 | 55 | 58 | 60 | 66 | 58 | 60 | 66 | ⁽¹⁾ Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) (3) Water temperature 45°C / 40°C, air temperature 20°C (4) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) ## RATED TECHNICAL DATA 4 PIPES | DUCTIMAX | | | | 13 | | | 14 | | | 23 | | | 24 | | |-------------------------------------|--------|-------|------|-------|------|------|-------|------|------|-------|------|------|-------|------| | Speed | | | min | med | max | | Declared speed | | | | 2,5,7 | | | 2,5,7 | | | 1,5,7 | | | 1,5,7 | | | Rated air flow | (E) | m³/h | 109 | 243 | 270 | 109 | 243 | 270 | 170 | 272 | 336 | 170 | 272 | 336 | | Available static pressure | (E) | Pa | 10 | 50 | 63 | 10 | 50 | 63 | 19 | 50 | 77 | 19 | 50 | 77 | | Power input | (E) | W | 24 | 57 | 82 | 24 | 57 | 82 | 34 | 69 | 106 | 34 | 69 | 106 | | Total cooling capacity | (1)(E) | kW | 0,92 | 1,70 | 1,86 | 0,95 | 1,88 | 2,06 | 1,26 | 1,88 | 2,24 | 1,35 | 2,09 | 2,49 | | Sensible cooling capacity | (1)(E) | kW | 0,61 | 1,20 | 1,31 | 0,63 | 1,28 | 1,40 | 0,88 | 1,33 | 1,57 | 0,92 | 1,42 | 1,70 | | FCEER class | (E) | | | | | | | ĺ |) | | | | | | | Water flow | (2) | I/h | 160 | 302 | 333 | 167 | 334 | 368 | 221 | 335 | 404 | 238 | 370 | 447 | | Water pressure drop | (2)(E) | kPa | 2 | 5 | 6 | 2 | 7 | 8 | 3 | 6 | 8 | 4 | 8 | 12 | | Heating capacity | (3)(E) | kW | 1,14 | 1,93 | 2,06 | 1,14 | 1,93 | 2,06 | 1,55 | 2,07 | 2,32 | 1,55 | 2,07 | 2,32 | | FCCOP class | (E) | | | | | | | 1 |) | | | | | | | Water flow | (3) | I/h | 100 | 169 | 180 | 100 | 169 | 180 | 136 | 181 | 204 | 136 | 181 | 204 | | Water pressure drop | (3)(E) | kPa | 1 | 2 | 3 | 1 | 2 | 3 | 2 | 3 | 3 | 2 | 3 | 3 | | Additional coil DF - number of rows | | | | 1 | | | 1 | | | 1 | | | 1 | | | Total sound power level | (4) | dB(A) | 32 | 49 | 52 | 28 | 49 | 52 | 39 | 50 | 54 | 39 | 50 | 54 | | Inlet + radiated sound power level | (4)(E) | dB(A) | 30 | 47 | 50 | 26 | 47 | 50 | 37 | 48 | 52 | 37 | 48 | 52 | | Outlet sound power level | (4)(E) | dB(A) | 29 | 46 | 49 | 25 | 46 | 49 | 36 | 47 | 51 | 36 | 47 | 51 | | DUCTIMAX | | | | 33 | | | 34 | | | 43 | | | 44 | | | |-------------------------------------|--------|-------|------|-------|------|------|-------|------|------|-------|------|------|-------|------|--| | Speed | | | min | med | max | | | Declared speed | | | | 1,6,7 | | | 1,6,7 | | | 1,4,7 | | | 1,4,7 | | | | Rated air flow | (E) | m³/h | 195 | 357 | 398 | 195 | 357 | 398 | 302 | 524 | 642 | 302 | 524 | 642 | | | Available static pressure | (E) | Pa | 19 | 50 | 63 | 19 | 50 | 63 | 17 | 50 | 75 | 17 | 50 | 75 | | | Power input | (E) | W | 34 | 85 | 106 | 34 | 85 | 106 | 76 | 143 | 192 | 76 | 143 | 192 | | | Total cooling capacity | (1)(E) | kW | 1,44 | 2,26 | 2,48 | 1,57 | 2,67 | 2,93 | 1,89 | 3,13 | 3,64 | 2,27 | 3,73 | 4,40 | | | Sensible cooling capacity | (1)(E) | kW | 1,01 | 1,68 | 1,84 | 1,07 | 1,84 | 2,01 | 1,41 | 2,35 | 2,78 | 1,56 | 2,57 | 3,04 | | | FCEER class | (E) | | | D | | | D | | | E | | | D | | | | Water flow | (2) | I/h | 252 | 402 | 445 | 274 | 473 | 522 | 339 | 562 | 656 | 403 | 664 | 788 | | | Water pressure drop | (2)(E) | kPa | 2 | 5 | 5 | 3 | 7 | 9 | 3 | 8 | 11 | 6 | 13 | 18 | | | Heating capacity | (3)(E) | kW | 2,09 | 3,09 | 3,29 | 2,09 | 3,09 | 3,29 | 2,80 | 3,82 | 4,24 | 2,80 | 3,82 | 4,24 | | | FCCOP class | (E) | | | C | | | C | | | D | | | D | | | | Water flow | (3) | I/h | 183 | 271 | 288 | 183 | 271 | 288 | 245 | 334 | 371 | 245 | 334 | 371 | | | Water pressure drop | (3)(E) | kPa | 2 | 3 | 4 | 2 | 3 | 4 | 3 | 5 | 6 | 3 | 5 | 6 | | | Additional coil DF - number of rows | | | | 1 | | | 1 | | | 1 | | | 1 | | | | Total sound power level | (4) | dB(A) | 36 | 47 | 51 | 36 | 47 | 51 | 38 | 52 | 58 | 38 | 52 | 58 | | | Inlet + radiated sound power level | (4)(E) | dB(A) | 37 | 48 | 52 | 37 | 48 | 52 | 36 | 50 | 56 | 36 | 50 | 56 | | | Outlet sound power level | (4)(E) | dB(A) | 36 | 47 | 51 | 36 | 47 | 51 | 35 | 49 | 55 | 35 | 49 | 55 | | | DUCTIMAX | | | | 53 | | | 54 | | | 63 | | | 64 | | |-------------------------------------|--------|-------|------|-------|------|------|-------|------|------|-------|------|------|-------|------| | Speed | · | | min | med | max | | Declared speed | | | | 1,6,7 | | | 1,6,7 | | | 5,6,7 | | | 5,6,7 | | | Rated air flow | (E) | m³/h | 333 | 683 | 755 | 333 | 683 | 755 | 1050 | 1163 | 1289 | 1050 | 1163 | 1289 | | Available static pressure | (E) | Pa | 12 | 50 | 61 | 12 | 50 | 61 | 40 | 50 | 60 | 40 | 50 | 60 | | Power input | (E) | W | 76 | 167 | 192 | 76 | 167 | 192 | 235 | 280 | 332 | 235 | 280 | 332 | | Total cooling capacity | (1)(E) | kW | 2,22 | 4,20 | 4,60 | 2,44 | 4,76 | 5,20 | 6,15 | 6,66 | 7,21 | 6,91 | 7,49 | 8,12 | | Sensible cooling capacity | (1)(E) | kW | 1,60 | 3,07 | 3,36 | 1,70 | 3,31 | 3,62 | 4,51 | 4,88 | 5,29 | 4,83 | 5,23 | 5,67 | | FCEER class | (E) | | | | - | | | | D | | | | | | | Water flow | (2) | l/h | 394 | 749 | 822 | 432 | 846 | 925 | 1095 | 1191 | 1295 | 1225 | 1333 | 1448 | | Water pressure drop | (2)(E) | kPa | 2 | 7 | 8 | 3 | 10 | 12 | 13 | 16 | 18 | 20 | 23 | 26 | | Heating capacity | (3)(E) | kW | 3,40 | 5,17 | 5,45 | 3,40 | 5,17 | 5,45 | 6,42 | 6,73 | 7,06 | 6,42 | 6,73 | 7,06 | | FCCOP class | (E) | | | | | | | | D | | | | | | | Water flow | (3) | l/h | 297 | 452 | 477 | 297 | 452 | 477 | 562 | 590 | 618 | 562 | 590 | 618 | | Water pressure drop | (3)(E) | kPa | 6 | 13 | 14 | 6 | 13 | 14 | 19 | 21 | 22 | 19 | 21 | 22 | | Additional coil DF - number of rows | | | | 1 | | | 1 | | | 1 | | | 1 | | | Total sound power level | (4) | dB(A) | 38 | 55 | 58 | 38 | 55 | 58 | 61 | 63 | 69 | 61 | 63 | 69 | | Inlet + radiated sound power level | (4)(E) | dB(A) | 36 | 53 | 56 | 36 | 53 | 56 | 59 | 61 | 67 | 59 | 61 | 67 | | Outlet sound power level | (4)(E) | dB(A) | 35 | 52 | 55 | 35 | 52 | 55 | 58 | 60 | 66 | 58 | 60 | 66 | ⁽¹⁾ Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) (3) Water temperature 65°C / 55°C, air temperature 20°C (4) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) ## DIMENSIONAL DRAWINGS ## DIMENSIONAL DRAWINGS | DUCTIMAX | 53 | 54 | 63 | 64 | | |---------------------------|----|----|----|----|--| | ON/OFF motor | х | Х | X | X | | | Inverter-controlled motor | X | Х | X | X | | x = available | DUCTIMAX | 1 | 2 | À | 3 | |----------|-----|-----|----|----| | DUCTIMAN | | | kg | mm | | 53 - 54 | 3/4 | 1/2 | 45 | 17 | | 63 - 64 | 3/4 | 1/2 | 51 | 17 | ## Medium available head duct units with EC motor ## **DUCTIMAX i 2 - 8 kW** # Modulation and efficiency in a recess ceiling-mounted unit The range is completed by DUCTIMAX i, which uses inverter EC technology in the electric motors. To the features of DUCTIMAX it adds the benefits of brushless technology, including a reduction in electricity consumption and consequent reduction in CO_2 emissions, increase in operating flexibility thanks to the modulation of air flow and increase in the level of comfort in terms of temperature, humidity and noise levels. The range is made up of 12 models with air flows from $300 \text{ to } 1200 \text{ m}^3\text{/h}$. Continuous modulation of the air flow and the use of high-efficiency heat exchangers enables operation also with small air-water temperature differences. The heat exchangers can also be optimized in the circuit for centralized applications such as district cooling. Operation is controlled from
wall-mounted microprocessor control panels with display, such as the MYCOMFORT LARGE and EVO models. Motor 2 p 2 pipes 4 pipes systems Centrifugal Ducted PLUS - » Permanent magnet EC motor - » Low electricity consumption - » Easy setup of ventilation section - » Heat exchanger up to 4 rows - » Compact dimensions - » Reversible water connections - » Wide range of available accessories **COMPATIBLE WITH PLENUM DMP** Besides assuring a big advantage in terms of energy efficiency, the inverter-controlled EC motor enables flexibility of installation and reduces the time needed to set up the ventilation section, thanks to the continuous modulation of air flow. ### **AVAILABLE VERSIONS** **DMXXDILO...A** Units for 2 pipes systems **DMXXDILL...A** Unit for 4-pipe systems equipped with an additional 1-row exchanger for the hot water circuit **DMXXDILM...A** Unit for 4-pipe systems equipped with an additional 2-row exchanger for the hot water circuit **(On request)** ### MAIN COMPONENTS #### **Structure** Built from galvanised steel sheet, heat and sound insulated by means of Class 1 self-extinguishing panels. Reduced height to facilitate installation in a horizontal position in a false ceiling. The structure incorporates a drip tray and condensate drain outlet. The main condensate drip tray is situated inside the structure of the unit and is at a positive pressure relative to the drain outlet to facilitate condensate drainage. #### **Fans** Double suction centrifugal fans made with ABS or aluminium, with statically and dynamically balanced forward-curving blades, directly coupled to the electric motor. #### **EC** electric motor Permanent magnet motor The unit is equipped with an inverter board to control the motor, that makes it possible to precisely set the maximum rotation speed of the motor (control signal 0-10 V). ### **Heat exchanger** High efficiency 3 and 4 rows heat exchanger made with copper piping and aluminium fins blocked to pipings by mechanical expansion, provided with brass manifolds and air vent valve. The heat exchanger usually comes with water connections mounted on the left, but it can be turned by 180°. High-efficiency heat exchangers optimized for district cooling applications are available on request. #### Air filter Washable air filter, made of acrylic fibre, filtration class G2 or G3, applied on the air intake; may be pulled out from below. | ACCES | SORIES | |-----------------|--| | Electronic mic | roprocessor control panels with display | | DIST | MY COMFORT controller spacer for wall mounting | | EVOBOARD | Circuit board for EVO control | | EVODISP | User interface with display for EVO controller | | MCLE | Microprocessor control with display MY COMFORT LARGE | | MCSUE | Humidity sensor for MY COMFORT (medium e large), EVO | | MCSWE | Water sensor for MYCOMFORT and EVO controllers | | Electronic mic | roprocessor control panels | | TED 10 | Electronic controller for EC fan equipped with inverter and ON/OFF valves 230 V | | TED SWA | Water temperature sensor for TED controls | | Auxiliary wate | er drip trays, insulating shell, condensate drainage pump | | KSC | Condensate drainage pump kit | | Electrical heat | ting elements | | RE | Heating element with installation kit, relay box and safety devices | | Air inlet and o | utlet grilles | | GA | Aluminium air intake grille, with frame | | GM | Aluminium air outlet grille with 2-row fins and subframe | | Valves | | | V2VDF+STD | 2-way valves, ON/OFF or MUDULATING actuator, 230 V or 24 V power supply, hydraulic kit, for main and additional heat exchanger | | V2VSTD | 2-way valve, ON/OFF or MODULATING actuator, 230 V or 24 V power supply, hydraulic kit, for main heat exchanger | | V3VDF | 3-way valves, ON/OFF or MODULATING actuator, 230 V or 24 V power supply, hydraulic kit, for additional heat exchanger | | V3VSTD | 2-way valves, ON/OFF or MODULATING actuator, 230 V or 24 V power supply, hydraulic kit, for main heat exchanger | |---------------|---| | VPIC | 2-way valves pressure independent, ON/OFF actuator, 230 V power supply, hydraulic kit, for main heat exchanger | | Plenum, air | intake modules, air in let and outlet connectors and cabinets | | MAF90 | Air intake module with G3 flat air filter | | MAFO | Air intake module with G4 undulated air filter | | MAF090 | Air intake module with G4 flat air filter | | PAF | Intake and delivery plenum, not insulated, with spigot Ø 200 mm | | PMA | Intake and delivery plenum, not insulated, with spigot Ø 200 mm | | PMAC | Intake and delivery plenum, insulated, with spigot Ø 200 mm | | R90 | 90° uninsulated air inlet/outlet connector | | R90C | 90° uninsulated air inlet/outlet connector | | RD | Straight uninsulated air inlet/outlet connector | | RDC | Straight insulated air inlet/outlet connector | | Flexible duc | rts - caps | | TFA | Not insulated flexible ducts, Ø 200 mm (6 m lenght undivisible) | | TFM | Insulated flexible ducts, Ø 200 mm (6 m lenght undivisible) | | TP | Plastic cap ∅ 200 mm | | Air inlet and | foutlet plenum box | | CA | Air Inlet plenum box with double row grille | | CAF | Air Inlet plenum box with double row grille 300 x 600 mm and filter G2 | | CM | Insulated air outlet plenum box with grille | | Accessories | <u> </u> | | VRC | Auxiliary water drip tray | ## **Duct unit DUCTIMAX i** ## RATED TECHNICAL DATA 2 PIPES | DUCTIMAX i | | | | 13 | | | 14 | | | 23 | | | 24 | | |------------------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | | Control voltage | (E) | ٧ | 2,90 | 8,00 | 9,00 | 2,90 | 8,00 | 9,00 | 4,30 | 7,50 | 8,40 | 4,30 | 7,50 | 8,40 | | Rated air flow | (E) | m³/h | 109 | 246 | 276 | 109 | 246 | 276 | 171 | 275 | 341 | 171 | 275 | 341 | | Available static pressure | (E) | Pa | 10 | 50 | 63 | 10 | 50 | 63 | 19 | 50 | 77 | 19 | 50 | 77 | | Power input | (E) | W | 6 | 25 | 33 | 6 | 25 | 33 | 10 | 24 | 39 | 10 | 24 | 39 | | Total cooling capacity | (1)(E) | kW | 0,93 | 1,76 | 1,95 | 0,96 | 1,92 | 2,16 | 1,29 | 1,95 | 2,34 | 1,38 | 2,16 | 2,60 | | Sensible cooling capacity | (1)(E) | kW | 0,62 | 1,25 | 1,39 | 0,64 | 1,34 | 1,48 | 0,91 | 1,39 | 1,66 | 0,95 | 1,49 | 1,79 | | FCEER class | (E) | | | | | | | | A | | | | | | | Water flow | (2) | I/h | 161 | 306 | 340 | 167 | 337 | 375 | 222 | 339 | 408 | 239 | 374 | 453 | | Water pressure drop | (2)(E) | kPa | 2 | 5 | 6 | 2 | 7 | 8 | 3 | 6 | 8 | 4 | 8 | 12 | | Heating capacity | (3)(E) | kW | 0,88 | 1,81 | 1,99 | 0,91 | 1,98 | 2,21 | 1,33 | 1,98 | 2,35 | 1,40 | 2,20 | 2,68 | | FCCOP class | (E) | | | | | | | | A | | | | | | | Water flow | (3) | l/h | 153 | 315 | 346 | 158 | 345 | 384 | 231 | 345 | 408 | 244 | 382 | 466 | | Water pressure drop | (3)(E) | kPa | 1 | 4 | 5 | 2 | 6 | 7 | 2 | 5 | 7 | 3 | 7 | 10 | | Standard coil - number of rows | | | | 3 | | | 4 | | | 3 | | | 4 | | | Total sound power level | (4) | dB(A) | 28 | 49 | 52 | 28 | 49 | 52 | 39 | 50 | 54 | 39 | 50 | 54 | | Inlet + radiated sound power level | (4)(E) | dB(A) | 26 | 47 | 50 | 26 | 47 | 50 | 37 | 48 | 52 | 37 | 48 | 52 | | Outlet sound power level | (4)(E) | dB(A) | 25 | 46 | 49 | 25 | 46 | 49 | 36 | 47 | 51 | 36 | 47 | 51 | | DUCTIMAX i | | | | 33 | | | 34 | | | 43 | | | 44 | | |------------------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | | Control voltage | (E) | V | 4,50 | 7,40 | 8,30 | 4,50 | 7,40 | 8,30 | 5,40 | 8,30 | 9,90 | 5,40 | 8,30 | 9,90 | | Rated air flow | (E) | m³/h | 195 | 360 | 402 | 195 | 360 | 402 | 305 | 532 | 652 | 305 | 532 | 652 | | Available static pressure | (E) | Pa | 19 | 50 | 63 | 19 | 50 | 63 | 17 | 50 | 75 | 17 | 50 | 75 | | Power input | (E) | W | 10 | 26 | 35 | 10 | 26 | 35 | 22 | 51 | 77 | 22 | 51 | 77 | | Total cooling capacity | (1)(E) | kW | 1,46 | 2,33 | 2,59 | 1,59 | 2,74 | 3,04 | 1,98 | 3,26 | 3,79 | 2,35 | 3,87 | 4,56 | | Sensible cooling capacity | (1)(E) | kW | 1,03 | 1,74 | 1,94 | 1,09 | 1,91 | 2,11 | 1,48 | 2,48 | 2,92 | 1,63 | 2,70 | 3,19 | | FCEER class | (E) | | A | | | | Α | | | В | | A | | | | Water flow | (2) | I/h | 252 | 406 | 449 | 274 | 476 | 527 | 343 | 568 | 664 | 407 | 673 | 798 | | Water pressure drop | (2)(E) | kPa | 2 | 5 | 5 | 3 | 7 | 9 | 3 | 8 | 11 | 6 | 14 | 18 | | Heating capacity | (3)(E) | kW | 1,57 | 2,70 | 2,96 | 1,59 | 2,80 | 3,10 | 2,35 | 3,71 | 4,31 | 2,41 | 3,95 | 4,68 | | FCCOP class | (E) | | | | | | | | 4 | | | | | | | Water flow | (3) | I/h | 272 | 470 | 515 | 276 | 488 | 538 | 408 | 644 | 749 | 419 | 687 | 814 | | Water pressure drop | (3)(E) | kPa | 2 | 5 | 6 | 2 | 6 | 8 | 4 | 9 | 11 | 5 | 12 | 16 | | Standard coil - number of rows | | | | 3 | | | 4 | | | 3 | | | 4 | | | Total sound power level | (4) | dB(A) | 39 | 50 | 54 | 39 | 50 | 54 | 38 | 52 | 58 | 38 | 52 | 58 | | Inlet + radiated sound power level | (4)(E) | dB(A) | 37 | 48 | 52 | 37 | 48 | 52 | 36 | 50 | 56 | 36 | 50 | 56 | | Outlet sound power level | (4)(E) | dB(A) | 36 | 47 | 51 | 36 | 47 | 51 | 35 | 49 | 55 | 35 | 49 | 55 | ⁽¹⁾ Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) (3) Water temperature 45°C / 40°C, air temperature 20°C (4) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) $NOTE: The \ dimensional \ drawings \ of the \ DUCTIMAX\ inverter units \ are \ the \ same \ of the \ DUCTIMAX\ ON/OFF\ version. They \ are \ reported \ from \ page \ 112$ ## RATED TECHNICAL DATA 2 PIPES | DUCTIMAX i | | | | 53 | | | 54 | | |
63 | | | 64 | | |------------------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | | Control voltage | (E) | ٧ | 3,40 | 7,60 | 8,50 | 3,40 | 7,60 | 8,50 | 6,80 | 7,50 | 8,30 | 6,80 | 7,50 | 8,30 | | Rated air flow | (E) | m³/h | 333 | 687 | 760 | 333 | 687 | 760 | 1050 | 1163 | 1289 | 1050 | 1163 | 1289 | | Available static pressure | (E) | Pa | 12 | 50 | 61 | 12 | 50 | 61 | 40 | 50 | 60 | 40 | 50 | 60 | | Power input | (E) | W | 11 | 54 | 67 | 11 | 54 | 67 | 105 | 128 | 162 | 105 | 128 | 162 | | Total cooling capacity | (1)(E) | kW | 2,29 | 4,34 | 4,75 | 2,51 | 4,91 | 5,35 | 6,28 | 6,81 | 7,38 | 7,04 | 7,64 | 8,28 | | Sensible cooling capacity | (1)(E) | kW | 1,67 | 3,21 | 3,51 | 1,77 | 3,45 | 3,76 | 4,64 | 5,03 | 5,46 | 4,96 | 5,38 | 5,84 | | FCEER class | (E) | | A | | | A | | | C | | | | | | | Water flow | (2) | l/h | 394 | 753 | 828 | 432 | 850 | 930 | 1094 | 1190 | 1295 | 1225 | 1332 | 1448 | | Water pressure drop | (2)(E) | kPa | 2 | 7 | 8 | 3 | 10 | 12 | 13 | 16 | 18 | 20 | 23 | 26 | | Heating capacity | (3)(E) | kW | 2,54 | 4,74 | 5,17 | 2,63 | 5,03 | 5,49 | 6,68 | 7,22 | 7,80 | 7,18 | 7,80 | 8,46 | | FCCOP class | (E) | | | Α | | | Α | | | В | | | В | | | Water flow | (3) | l/h | 441 | 827 | 898 | 457 | 875 | 955 | 1162 | 1256 | 1356 | 1248 | 1355 | 1471 | | Water pressure drop | (3)(E) | kPa | 2 | 7 | 8 | 3 | 9 | 11 | 12 | 14 | 16 | 17 | 19 | 22 | | Standard coil - number of rows | | | 3 | | | | 4 | | | 3 | | | 4 | | | Total sound power level | (4) | dB(A) | 38 | 55 | 58 | 38 | 55 | 58 | 61 | 63 | 69 | 61 | 63 | 69 | | Inlet + radiated sound power level | (4)(E) | dB(A) | 36 | 53 | 56 | 36 | 53 | 56 | 59 | 61 | 67 | 59 | 61 | 67 | | Outlet sound power level | (4)(E) | dB(A) | 35 | 52 | 55 | 35 | 52 | 55 | 58 | 60 | 66 | 58 | 60 | 66 | ⁽¹⁾ Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) (3) Water temperature 45°C/40°C, air temperature 20°C (4) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) ## **Duct unit DUCTIMAX i** ## RATED TECHNICAL DATA 4 PIPES | DUCTIMAX i | | | | 13 | | | 14 | | | 23 | | | 24 | | |-------------------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | | Control voltage | (E) | ٧ | 2,90 | 7,90 | 8,90 | 2,90 | 7,90 | 8,90 | 4,50 | 7,30 | 8,90 | 4,50 | 7,30 | 8,90 | | Rated air flow | (E) | m³/h | 109 | 243 | 270 | 109 | 243 | 270 | 170 | 272 | 336 | 170 | 272 | 336 | | Available static pressure | (E) | Pa | 10 | 50 | 63 | 10 | 50 | 63 | 19 | 50 | 77 | 19 | 50 | 77 | | Power input | (E) | W | 6 | 25 | 32 | 6 | 25 | 32 | 10 | 23 | 39 | 10 | 23 | 39 | | Total cooling capacity | (1)(E) | kW | 0,93 | 1,74 | 1,91 | 0,96 | 1,92 | 2,11 | 1,28 | 1,93 | 2,31 | 1,37 | 2,14 | 2,56 | | Sensible cooling capacity | (1)(E) | kW | 0,62 | 1,24 | 1,36 | 0,64 | 1,32 | 1,45 | 0,90 | 1,38 | 1,64 | 0,94 | 1,47 | 1,77 | | FCEER class | (E) | | | | | | | | A | | | | | | | Water flow | (2) | l/h | 161 | 302 | 333 | 167 | 334 | 368 | 221 | 335 | 404 | 238 | 370 | 447 | | Water pressure drop | (2)(E) | kPa | 2 | 5 | 6 | 2 | 7 | 8 | 3 | 6 | 8 | 4 | 8 | 12 | | Heating capacity | (3)(E) | kW | 1,14 | 1,93 | 2,06 | 1,14 | 1,93 | 2,06 | 1,55 | 2,07 | 2,32 | 1,55 | 2,07 | 2,32 | | FCCOP class | (E) | | | | | | | | A | | | | | | | Water flow | (3) | l/h | 100 | 169 | 180 | 100 | 169 | 180 | 136 | 181 | 204 | 136 | 181 | 204 | | Water pressure drop | (3)(E) | kPa | 1 | 2 | 3 | 1 | 2 | 3 | 2 | 3 | 3 | 2 | 3 | 3 | | Additional coil DF - number of rows | | | | 3+1 | | | 4+1 | | | 3+1 | | | 4+1 | | | Total sound power level | (4) | dB(A) | 28 | 49 | 52 | 28 | 49 | 52 | 39 | 50 | 54 | 39 | 50 | 54 | | Inlet + radiated sound power level | (4)(E) | dB(A) | 26 | 47 | 50 | 26 | 47 | 50 | 37 | 48 | 52 | 37 | 48 | 52 | | Outlet sound power level | (4)(E) | dB(A) | 25 | 46 | 49 | 25 | 46 | 49 | 36 | 47 | 51 | 36 | 47 | 51 | | DUCTIMAX i | | | | 33 | | | 34 | | | 43 | | | 44 | | | |-------------------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------|--| | Speed | | | min | med | max | | | Control voltage | (E) | V | 4,50 | 7,40 | 8,30 | 4,50 | 7,40 | 8,30 | 5,40 | 8,30 | 9,90 | 5,40 | 8,30 | 9,90 | | | Rated air flow | (E) | m³/h | 195 | 357 | 398 | 195 | 357 | 398 | 302 | 524 | 642 | 302 | 524 | 642 | | | Available static pressure | (E) | Pa | 19 | 50 | 63 | 19 | 50 | 63 | 17 | 50 | 75 | 17 | 50 | 75 | | | Power input | (E) | W | 10 | 26 | 35 | 10 | 26 | 35 | 21 | 50 | 77 | 21 | 50 | 77 | | | Total cooling capacity | (1)(E) | kW | 1,46 | 2,31 | 2,56 | 1,59 | 2,72 | 3,01 | 1,95 | 3,22 | 3,75 | 2,33 | 3,82 | 4,51 | | | Sensible cooling capacity | (1)(E) | kW | 1,03 | 1,73 | 1,92 | 1,09 | 1,89 | 2,09 | 1,47 | 2,44 | 2,89 | 1,62 | 2,66 | 3,15 | | | FCEER class | (E) | | A | | | | Α | | | В | | | A | | | | Water flow | (2) | l/h | 252 | 402 | 445 | 274 | 473 | 522 | 339 | 562 | 656 | 403 | 664 | 788 | | | Water pressure drop | (2)(E) | kPa | 2 | 5 | 5 | 3 | 7 | 9 | 3 | 8 | 11 | 6 | 13 | 18 | | | Heating capacity | (3)(E) | kW | 1,71 | 2,53 | 2,69 | 1,69 | 2,50 | 2,66 | 2,80 | 3,82 | 4,24 | 2,80 | 3,82 | 4,24 | | | FCCOP class | (E) | | | | | | | - 1 | 4 | | | | | | | | Water flow | (3) | l/h | 183 | 271 | 288 | 183 | 271 | 288 | 245 | 334 | 371 | 245 | 334 | 371 | | | Water pressure drop | (3)(E) | kPa | 3 | 4 | 5 | 4 | 5 | 7 | 3 | 5 | 6 | 3 | 5 | 6 | | | Additional coil DF - number of rows | | | | 3+1 | | | 4+1 | | | 3+1 | | | 4+1 | | | | Total sound power level | (4) | dB(A) | 39 | 50 | 54 | 39 | 50 | 54 | 38 | 52 | 58 | 38 | 52 | 58 | | | Inlet + radiated sound power level | (4)(E) | dB(A) | 37 | 48 | 52 | 37 | 48 | 52 | 36 | 50 | 56 | 36 | 50 | 56 | | | Outlet sound power level | (4)(E) | dB(A) | 36 | 47 | 51 | 36 | 47 | 51 | 35 | 49 | 55 | 35 | 49 | 55 | | ⁽¹⁾ Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) (3) Water temperature 65°C / 55°C, air temperature 20°C (4) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) $NOTE: The \ dimensional \ drawings \ of the \ DUCTIMAX\ inverter units \ are \ the \ same \ of the \ DUCTIMAX\ ON/OFF\ version. They \ are \ reported \ from \ page \ 112$ ## RATED TECHNICAL DATA 4 PIPES | DUCTIMAX i | | | | 53 | | | 54 | | | 63 | | | 64 | | |-------------------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | | Control voltage | (E) | ٧ | 3,40 | 7,60 | 8,50 | 3,40 | 7,60 | 8,50 | 6,80 | 7,50 | 8,30 | 6,80 | 7,50 | 8,30 | | Rated air flow | (E) | m³/h | 333 | 683 | 755 | 333 | 683 | 755 | 1050 | 1163 | 1289 | 1060 | 1163 | 1289 | | Available static pressure | (E) | Pa | 12 | 50 | 61 | 12 | 50 | 61 | 40 | 50 | 60 | 40 | 50 | 60 | | Power input | (E) | W | 11 | 54 | 67 | 11 | 54 | 67 | 149 | 204 | 244 | 105 | 128 | 162 | | Total cooling capacity | (1)(E) | kW | 2,29 | 4,32 | 4,72 | 2,51 | 4,88 | 5,32 | 6,28 | 6,81 | 7,38 | 7,04 | 7,64 | 8,28 | | Sensible cooling capacity | (1)(E) | kW | 1,67 | 3,19 | 3,48 | 1,77 | 3,43 | 3,74 | 4,64 | 5,03 | 5,46 | 4,96 | 5,38 | 5,84 | | FCEER class | (E) | | A | | | A | | | | C | | В | | | | Water flow | (2) | l/h | 394 | 749 | 822 | 432 | 846 | 925 | 1094 | 1190 | 1295 | 1225 | 1332 | 1448 | | Water pressure drop | (2)(E) | kPa | 2 | 7 | 8 | 3 | 10 | 12 | 13 | 16 | 18 | 20 | 23 | 26 | | Heating capacity | (3)(E) | kW | 3,40 | 5,17 | 5,45 | 3,40 | 5,17 | 5,45 | 6,42 | 6,73 | 7,06 | 6,42 | 6,73 | 7,06 | | FCCOP class | (E) | | | Α | | | Α | | | D | | | C | | | Water flow | (3) | l/h | 297 | 452 | 477 | 297 | 452 | 477 | 562 | 589 | 618 | 562 | 589 | 618 | | Water pressure drop | (3)(E) | kPa | 6 | 13 | 14 | 6 | 13 | 14 | 19 | 21 | 22 | 19 | 21 | 22 | | Additional coil DF - number of rows | | | 3+1 | | | | 4+1 | | | 3+1 | | | 4+1 | | | Total sound power level | (4) | dB(A) | 38 | 55 | 58 | 38 | 55 | 58 | 61 | 63 | 69 | 61 | 63 | 69 | | Inlet + radiated sound power level | (4)(E) | dB(A) | 36 | 53 | 56 | 36 | 53 | 56 | 59 | 61 | 67 | 59 | 61 | 67 | | Outlet sound power level | (4)(E) | dB(A) | 35 | 52 | 55 | 35 | 52 | 55 | 61 | 64 | 66 | 58 | 60 | 66 | ⁽¹⁾ Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) (3) Water temperature 65°C / 55°C, air temperature 20°C (4) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) ## High-head thermal ventilating units ## **UTN 3 - 23 kW** ## Flexibility of installation to respond to every need The UTN range of thermal ventilating units has been developed for air conditioning rooms where the use of ducted hydronic indoor units capable of assuring available heads of up to 180 Pa and cooling capacities of 3 to 23 kW is required. The units are characterised by a high flexibility of installation, as they can in fact be positioned either vertically or horizontally and the orientation of the air intake in the rear or front part of the unit itself can be modified by simply moving the inspection panel. All units have a standard configuration for the intake of fresh air and slots for rapidly fixing them to the wall or ceiling. Their reduced height (280 mm up to size 16 and 350 mm for larger sizes) enables them to be accommodated
in normal false ceiling and the availability of a wide range of plumbing and ventilation accessories makes it easy to integrate them into air conditioning systems. The units are available in standard and high-efficiency models, depending on the finned block exchanger used, so that they can be better adapted to the needs of the room to be air-conditioned. Centrifugal ## PLUS - » Compact dimensions (height 280 mm up to size 16 and 350 mm for larger sizes) - » Vertical and horizontal installation - » Wide range of available accessories for simple integration into the system - » Available head up to 180 Pa - » High flexibility of installation ### **AVAILABLE VERSIONS** UTXXX0L0...0A Thermal ventilating unit suitable for 2-pipe UTXXX0LL...0A Thermal ventilating unit suitable for 4-pipe systems (2 heat exchangers) UTXXX0L0...02 The version with double panelling is made with pre-painted sheet steel insulated with class 0 fire-resistant rockwool (On request) ### MAIN COMPONENTS #### **Structure** Made of galvanized sheet steel insulated with sound-deadening, heat-insulating, self-extinguishing closed-cell material to reduce noise emissions and prevent the formation of condensate on the outside surface. #### Heat exchanger It is composed of copper tubing and aluminium fins fixed by expansion. Water connections are reversible An additional exchanger is available for installing the unit in 4-pipe systems. #### Fan The aluminium fans are of the centrifugal type, with double suction and staggered blades to reduce noise emissions. They are statically and dynamically balanced to minimize the stresses transmitted to the motor shaft. #### Filter module The air filter, made of regenerable acrylic fibre, is available as an accessory in filtration classes G2 or G4 #### **Electric motor** Three-speed electrical motor, mounted on vibration damping couplings, directly connected to the fans, with permanently activated capacitor and winding thermal protection #### Condensate collection and drainage system It consists of two insulated galvanized sheet steel trays designed for horizontal and vertical installation. | CONFIGURATOR | | | | | | | | | | | | | | |---|------------------|-------|---|---|-----|---|---|---|---|---|---|----|----| | The models are completely configurable by selecting the | Version | Field | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | version and the options. To the right is shown an example of configuration. | UT08 | | D | 0 | L | 0 | 0 | 0 | 0 | 0 | N | 0 | Α | | _ | T 10 d (1994 Cd) | | 1 | | - 1 | | | | | | | | | To verify the compatibility of the options, use the selection software or the price list. #### **CONFIGURATOR** - Version - Ducted version with high performance - Standard ducted version - Motor - 3-speed motor - BLDC motor - 3 Main coil hydraulic side - Water connections on the left side - Water connections on the right Additional coil hydraulic side / heating element Absent - Water connections on the left side - Water connections on the right - 5 Valve - 0 Absent - Control panel - 0 Absent - EVOBOARD Circuit board EVOBOARD circuit board + NAVEL Wi-Fi module #### 7 **Probes** - Absent - SA Remote air probe for MYCOMFORT, LED503 and EVO SW Water probe for MYCOMFORT, LED503 and EVO - SU Humidity probe for MYCOMFORT and EVO - SA+SW Remote air and water probes for MYCOMFORT, LED503 and EVO - SA+SU Remote air and humidity probes for MYCOMFORT and EVO - SA+SU+SW- Remote air, water, humidity probes for MYCOMFORT and EVO - SA Remote air probe for TED SW Water probe for TED SA + SW Air and water probes for TED - Accessories - 0 Absent 9 Filter - N No filter - 10 Release - 0 0 - Α Α | ACCESS | Sories | |------------------|---| | Elecromechani | cal control panels | | CD | Recess wall-mounted speed switch | | IPM | Circuit board for connection of UTN 30-30A-40-40A to control panels. | | TA2 | Electromechanical room thermostat with summer/winter selection | | TC | Thermostat for minimum water temperature in heating mode (42 °C) | | TD | Wall mounted control with speed selector, thermostat and summer-winter selector | | TDC | Wall mounted control with speed selector and thermostat | | Electronic micr | oprocessor control panels with display | | СОВ | Finishing plate for LED 503 controller, RAL9005 black | | COG | Finishing plate for LED 503 controller, RAL7031 grey | | COW | Finishing plate for LED 503 controller, RAL9003 white | | DIST | MY COMFORT controller spacer for wall mounting | | EVO-2-TOUCH | 2.8" touch screen user interface for EVO control | | EVOBOARD | Circuit board for EVO control | | EVODISP | User interface with display for EVO controller | | EYNAVEL | Device for Wi-Fi or Bluetooth communication between EVOBOARD and smartphone | | LED503 | Recessed wall-mounted electronic display controller LED 503 | | MCBE | MYCOMFORT BASE electronic controller with display | | MCLE | Microprocessor control with display MY COMFORT LARGE | | MCME | MYCOMFORT MEDIUM electronic controller with display | | MCSUE | Humidity sensor for MY COMFORT (medium e large), EVO | | MCSWE | Water sensor for MYCOMFORT and EVO controllers | | Electronic micr | oprocessor control panels | | TED 2T | Electronic controller for AC fan control and one ON/OFF 230 V valve | | TED 4T | Electronic controller for AC fan control and two ON/OFF 230 V valves | | TED SWA | Water temperature sensor for TED controls | | Power interfac | e and regulating louver controllers | | CSD | Recess mounted controller for opening and closing the SM motor-driven regulating louver | | KP | Power interface for connecting in parallel up to 4 fun coil units to the one controller | | | r drip trays, insulating shell, condensate drainage pump | | KSC | Condensate drainage pump kit | | Electrical heati | | | RE | Heating element with installation kit, relay box and safety devices | | Air inlet and ou | utlet grilles | | | | | GA | Aluminium air intake grille, with frame | |-----------------|--| | GM | Aluminium air outlet grille with 2-row fins and subframe | | GR | Air intake grille with subframe | | GRF | Air intake grille with subframe and filter | | External air in | take louvers | | PA90 | Motor-driven external air intake louver | | Valves | | | V2VDF+STD | 2-way valves, ON/OFF or MUDULATING actuator, 230 V or 24 V power supply, hydraulic kit, for main and additional heat exchanger | | V2VSTD | 2-way valve, ON/OFF or MODULATING actuator, 230 V or 24 V power supply, hydraulic kit, for main heat exchanger | | V3VDF | 3-way valves, ON/OFF or MODULATING actuator, 230 V or 24 V power supply, hydraulic kit, for additional heat exchanger | | V3VSTD | 2-way valves, ON/OFF or MODULATING actuator, 230 V or 24 V power supply, hydraulic kit, for main heat exchanger | | VPIC | 2-way valves pressure independent, ON/OFF actuator, 230 V power supply, hydraulic kit, for main heat exchanger | | Plenum, air in | take modules, air inlet and outlet connectors and cabinets | | G90 | 90° connection for intake/delivery | | MAF | Air intake module with G2 flat air filter | | MAFO | Air intake module with G4 undulated air filter | | PCOC | Junction panel with rectangular duct | | PCOF | Junction panel with flexible circular duct Ø 200 | | Flexible ducts | - caps | | TFA | Not insulated flexible ducts, Ø 200 mm (6 m lenght undivisible) | | TFM | Insulated flexible ducts, Ø 200 mm (6 m lenght undivisible) | | TP | Plastic cap Ø 200 mm | | Air inlet and o | utlet plenum box | | CA | Air Inlet plenum box with double row grille | | CAF | Air Inlet plenum box with double row grille 300 x 600 mm and filter G2 | | CM | Insulated air outlet plenum box with grille | | Accessories | | | UYBP | Hot water post-heating exchanger kit | | VRCH | Auxiliary water drip tray for horizontal installation units | | VRCV | Auxiliary water drip tray for vertical installation units | | | | ## RATED TECHNICAL DATA 2 PIPES | UTN | | | | 6A | | | 6D | | | 8A | | | 8D | | |------------------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | | Rated air flow | (E) | m³/h | 343 | 458 | 561 | 348 | 465 | 572 | 532 | 692 | 791 | 534 | 700 | 802 | | Available static pressure | (E) | Pa | 28 | 50 | 75 | 28 | 50 | 75 | 30 | 50 | 65 | 29 | 50 | 65 | | Power input | (E) | W | 84 | 122 | 188 | 84 | 122 | 188 | 135 | 185 | 265 | 135 | 185 | 265 | | Total cooling capacity | (1)(E) | kW | 2,22 | 2,88 | 3,39 | 1,94 | 2,46 | 2,84 | 3,29 | 4,09 | 4,50 | 2,74 | 3,36 | 3,65 | | Sensible cooling capacity | (1)(E) | kW | 1,63 | 2,13 | 2,52 | 1,47 | 1,87 | 2,16 | 2,45 | 3,08 | 3,41 | 2,10 | 2,59 | 2,83 | | FCEER class | (E) | | | | | | | | E | | | | | | | Water flow | (2) | l/h | 382 | 496 | 584 | 334 | 424 | 489 | 567 | 704 | 775 | 472 | 579 | 629 | | Water pressure drop | (2)(E) | kPa | 4 | 6 | 9 | 5 | 8 | 11 | 8 | 12 | 14 | 10 | 14 | 17 | | Heating capacity | (3)(E) | kW | 2,47 | 3,14 | 3,70 | 2,19 | 2,75 | 3,20 | 3,55 | 4,36 | 4,83 | 3,04 | 3,69 | 4,05 | | FCCOP class | (E) | | | D | | | E | | | E | | | E | | | Water flow | (3) | l/h | 425 | 541 | 637 | 377 | 474 | 551 | 611 | 751 | 832 | 523 | 635 | 697 | | Water pressure drop | (3)(E) | kPa | 4 | 6 | 8 | 5 | 8 | 10 | 7 | 11 | 13 | 9 | 13 | 15 | | Standard coil - number of rows | | | | 4 | | | 3 | | | 4 | | | 3 | | | Total sound power level | (4) | dB(A) | 48 | 57 | 63 | 48 | 57 | 63 | 54 | 61 | 66 | 54 | 61 | 66 | | Inlet + radiated sound power level | (4)(E) | dB(A) | 46 | 54 | 61 | 46 | 54 | 61 | 52 | 59 | 64 | 52 | 59 | 64 | | Outlet sound power level | (4)(E) | dB(A) | 45 | 53 | 59 | 45 | 53 | 59 | 51 | 58 | 63 | 51 | 58 | 63 | | N | | | | 12A | | | 12D | | | 16A | | | 16D | |
--|---------------------------------|--------------|------|------|------|------------|----------|------|------|------|------|------|------|------| | Speed | | | min | med | max | | Rated air flow | (E) | m³/h | 1000 | 1107 | 1203 | 1019 | 1134 | 1238 | 1198 | 1371 | 1581 | 1207 | 1384 | 1606 | | Available static pressure | (E) | Pa | 41 | 50 | 59 | 40 | 50 | 59 | 38 | 50 | 66 | 38 | 50 | 67 | | Power input | (E) | W | 345 | 385 | 460 | 345 | 385 | 460 | 290 | 380 | 505 | 290 | 380 | 505 | | Total cooling capacity | (1)(E) | kW | 5,54 | 5,99 | 6,34 | 4,98 | 5,39 | 5,70 | 6,67 | 7,41 | 8,24 | 6,03 | 6,63 | 7,32 | | Sensible cooling capacity | (1)(E) | kW | 4,11 | 4,47 | 4,73 | 3,66 | 3,94 | 4,16 | 5,23 | 5,86 | 6,58 | 4,84 | 5,39 | 6,04 | | FCEER class | (E) | | | | | | | | E | | | | | | | Water flow | (2) | l/h | 954 | 1031 | 1092 | 858 | 928 | 982 | 1149 | 1276 | 1419 | 1038 | 1142 | 1261 | | Water pressure drop | (2)(E) | kPa | 15 | 17 | 19 | 18 | 21 | 24 | 11 | 13 | 16 | 17 | 20 | 24 | | Heating capacity | (3)(E) | kW | 6,29 | 6,80 | 7,26 | 5,59 | 6,03 | 6,42 | 7,28 | 8,04 | 8,93 | 6,47 | 7,11 | 7,88 | | FCCOP class | (E) | | | | | | | | E | | | | | | | Water flow | (3) | l/h | 1083 | 1171 | 1250 | 963 | 1038 | 1106 | 1254 | 1384 | 1538 | 1114 | 1224 | 1357 | | Water pressure drop | (3)(E) | kPa | 14 | 17 | 18 | 17 | 19 | 22 | 10 | 12 | 14 | 15 | 17 | 21 | | Standard coil - number of rows | | | | 4 | | | 3 | | | 4 | | | 3 | | | Total sound power level | (4) | dB(A) | 61 | 63 | 69 | 59 | 63 | 69 | 62 | 67 | 72 | 62 | 67 | 72 | | Inlet + radiated sound power level | (4)(E) | dB(A) | 56 | 60 | 66 | 56 | 60 | 66 | 60 | 64 | 70 | 60 | 64 | 70 | | Outlet sound power level | (4)(E) | dB(A) | 59 | 59 | 65 | 55 | 59 | 65 | 58 | 63 | 69 | 58 | 63 | 69 | | Water temperature 7°C/12°C, air temperature Water temperature 7°C/12°C, air temperature Water temperature 45°C/40°C, air temperature Sound power measured according to standard EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) | e dry bulb 27°C, we
ire 20°C | et bulb 19°C | | | | ng to EN13 | 397:2021 | | | | | | | | ## RATED TECHNICAL DATA 2 PIPES | UTN | | | 19A | | 22A | | | 220 | | | 30A | | | | |------------------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | | Rated air flow | (E) | m³/h | 1166 | 1500 | 1577 | 1436 | 1819 | 2222 | 1483 | 1898 | 2376 | 2074 | 2604 | 3174 | | Available static pressure | (E) | Pa | 38 | 50 | 62 | 31 | 50 | 75 | 30 | 50 | 78 | 32 | 50 | 74 | | Power input | (E) | W | 290 | 380 | 505 | 370 | 535 | 750 | 370 | 535 | 750 | 870 | 1090 | 1300 | | Total cooling capacity | (1)(E) | kW | 7,34 | 9,17 | 10,1 | 9,20 | 11,2 | 13,1 | 8,41 | 10,1 | 11,8 | 12,9 | 15,4 | 17,7 | | Sensible cooling capacity | (1)(E) | kW | 5,43 | 6,81 | 8,83 | 6,76 | 8,32 | 9,85 | 6,35 | 7,75 | 9,22 | 9,38 | 11,4 | 13,5 | | FCEER class | (E) | | | | | | | | E | | | | | | | Water flow | (2) | l/h | 1266 | 1582 | 1749 | 1584 | 1927 | 2249 | 1448 | 1743 | 2039 | 2221 | 2652 | 3048 | | Water pressure drop | (2)(E) | kPa | 20 | 31 | 36 | 12 | 17 | 22 | 15 | 21 | 29 | 27 | 37 | 48 | | Heating capacity | (3)(E) | kW | 7,94 | 9,96 | 11,0 | 9,73 | 11,7 | 13,7 | 9,06 | 10,8 | 12,7 | 13,7 | 16,4 | 19,1 | | FCCOP class | (E) | | | D | | | E | | | E | | | E | | | Water flow | (3) | l/h | 1365 | 1715 | 1857 | 1676 | 2020 | 2354 | 1560 | 1867 | 2190 | 2359 | 2824 | 3289 | | Water pressure drop | (3)(E) | kPa | 22 | 29 | 34 | 10 | 14 | 19 | 14 | 19 | 25 | 23 | 32 | 41 | | Standard coil - number of rows | | | | 4 | | | 4 | | | 3 | | | 5 | | | Total sound power level | (4) | dB(A) | 61 | 67 | 71 | 60 | 67 | 74 | 60 | 67 | 74 | 69 | 73 | 78 | | Inlet + radiated sound power level | (4)(E) | dB(A) | 59 | 65 | 69 | 58 | 65 | 72 | 58 | 65 | 72 | 67 | 71 | 76 | | Outlet sound power level | (4)(E) | dB(A) | 57 | 63 | 68 | 57 | 64 | 71 | 57 | 64 | 71 | 66 | 70 | 75 | | UTN | | | 30D | | | 40A | | | 40D | | | |------------------------------------|--------|-------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | min | med | max | min | med | max | | Rated air flow | (E) | m³/h | 2092 | 2641 | 3207 | 3067 | 3622 | 4287 | 3129 | 3706 | 4422 | | Available static pressure | (E) | Pa | 31 | 50 | 74 | 36 | 50 | 71 | 35 | 50 | 71 | | Power input | (E) | W | 870 | 1090 | 1300 | 650 | 820 | 1150 | 650 | 820 | 1150 | | Total cooling capacity | (1)(E) | kW | 11,6 | 13,8 | 15,9 | 17,3 | 19,6 | 22,0 | 15,4 | 17,4 | 19,5 | | Sensible cooling capacity | (1)(E) | kW | 8,61 | 10,4 | 12,2 | 13,3 | 15,3 | 17,5 | 12,1 | 13,8 | 15,6 | | FCEER class | (E) | | | E | | | D | | | E | | | Water flow | (2) | l/h | 2003 | 2382 | 2741 | 3082 | 3505 | 3979 | 2761 | 3128 | 3551 | | Water pressure drop | (2)(E) | kPa | 21 | 29 | 37 | 16 | 20 | 25 | 17 | 21 | 26 | | Heating capacity | (3)(E) | kW | 12,7 | 15,0 | 17,3 | 18,8 | 21,2 | 24,0 | 17,2 | 19,4 | 21,8 | | FCCOP class | (E) | | | E | | | D | | | D | | | Water flow | (3) | I/h | 2183 | 2592 | 2977 | 3263 | 3693 | 4177 | 2986 | 3364 | 3799 | | Water pressure drop | (3)(E) | kPa | 18 | 25 | 31 | 18 | 22 | 28 | 18 | 23 | 28 | | Standard coil - number of rows | | | 4 | | | 5 | | | 4 | | | | Total sound power level | (4) | dB(A) | 69 | 73 | 78 | 70 | 74 | 79 | 70 | 74 | 79 | | Inlet + radiated sound power level | (4)(E) | dB(A) | 67 | 71 | 76 | 68 | 72 | 77 | 68 | 72 | 77 | | Outlet sound power level | (4)(E) | dB(A) | 66 | 70 | 75 | 67 | 71 | 76 | 67 | 71 | 76 | ⁽¹⁾ Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) (3) Water temperature 45°C/40°C, air temperature 20°C (4) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) ## RATED TECHNICAL DATA 4 PIPES | UTN | | | | 6A | | | 6D | | 8A | | | 8D | | | |---------------------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | | Rated air flow DF | (E) | m³/h | 342 | 455 | 557 | 346 | 463 | 567 | 529 | 686 | 783 | 531 | 694 | 793 | | Available static pressure DF | (E) | Pa | 28 | 50 | 75 | 28 | 50 | 75 | 30 | 50 | 65 | 29 | 50 | 65 | | Power input DF | (E) | W | 84 | 122 | 188 | 84 | 122 | 188 | 135 | 185 | 265 | 135 | 185 | 265 | | Total cooling capacity DF | (1)(E) | kW | 2,21 | 2,86 | 3,37 | 1,93 | 2,44 | 2,82 | 3,27 | 4,06 | 4,46 | 2,73 | 3,33 | 3,61 | | Sensible cooling capacity DF | (1)(E) | kW | 1,62 | 2,11 | 2,50 | 1,46 | 1,86 | 2,15 | 2,43 | 3,06 | 3,38 | 2,09 | 2,57 | 2,80 | | FCEER class DF | (E) | | | | | | | , | E | | | | | | | Water flow DF | (2) | l/h | 381 | 492 | 580 | 332 | 420 | 486 | 563 | 699 | 768 | 470 | 573 | 622 | | Water pressure drop DF | (2)(E) | kPa | 4 | 6 | 9 | 5 | 8 | 11 | 8 | 12 | 14 | 10 | 14 | 17 | | Heating capacity DF | (3)(E) | kW | 2,56 | 2,99 | 3,31 | 2,58 | 3,02 | 3,34 | 3,23 | 3,66 | 3,89 | 3,23 | 3,68 | 3,91 | | FCCOP class DF | (E) | | | D | | | D | | | E | | | E | | | Water flow DF | (3) | l/h | 220 | 257 | 285 | 222 | 260 | 288 | 278 | 315 | 335 | 278 | 317 | 337 | | Water pressure drop DF | (3)(E) | kPa | 3 | 4 | 5 | 3 | 5 | 5 | 5 | 6 | 7 | 5 | 6 | 7 | | Additional coil DF - number of rows | | | | 1 | | | 1 | | | 1 | | | 1 | | | Total sound power level DF | (4) | dB(A) | 48 | 57 | 63 | 48 | 57 | 63 | 54 | 61 | 66 | 54 | 61 | 66 | | Inlet + radiated sound power level DF | (4)(E) | dB(A) | 46 | 54 | 61 | 46 | 54 | 61 | 52 | 59 | 64 | 52 | 59 | 64 | | Outlet sound power level DF | (4)(E) | dB(A) | 45 | 53 | 59 | 45 | 53 | 59 | 51 | 58 | 63 | 51 | 58 | 63 | | UTN | | | 12A | | | 12D | | | 16A | | | 16D | | | |---------------------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | | Rated air flow DF | (E) | m³/h | 985 | 1088 | 1182 | 1005 | 1115 | 1211 | 1184 | 1349 | 1550 | 1192 | 1362 | 1576 | | Available static pressure DF | (E) | Pa | 41 | 50 | 59 | 41 | 50 | 59 | 38 | 50 | 66 | 38 | 50 | 67 | | Power input DF | (E) | W | 345 | 385 | 460 | 345 | 385 | 460 | 290 | 380 | 505 | 290 | 380 | 505 | | Total cooling capacity DF | (1)(E) | kW | 5,47 | 5,91 | 6,24 | 4,93 | 5,32 | 5,60 | 6,60 | 7,31 | 8,10 | 5,97 | 6,54 | 7,21 | | Sensible cooling capacity DF | (1)(E) | kW | 4,06 | 4,40 | 4,66 | 3,60 | 3,89 | 4,08 | 5,17 | 5,77 | 6,46 | 4,79 | 5,31 | 5,94 | | FCEER class DF | (E) | | | | | | | | E | | | | | | | Water flow DF | (2) | l/h | 942 | 1018 | 1075 | 849 | 916 | 964 | 1137 | 1259 | 1395 | 1028 | 1126 | 1242 | | Water pressure drop DF | (2)(E) | kPa | 15 | 17 | 19 | 18 | 21 | 23 | 10 | 13 | 15 | 16 | 19 | 23 | | Heating capacity DF | (3)(E) | kW | 5,21 | 5,45 | 5,65 | 5,25 | 5,51 | 5,72 | 6,99 | 7,44 | 7,94 | 7,02 | 7,47 | 7,99 | | FCCOP class DF | (E) | | | | | | | | E | | | | | | | Water flow DF | (3) | l/h | 449 | 469 | 486 | 452 | 474 | 492 | 602 | 641 | 684 | 604 | 643 | 688 | | Water pressure drop DF | (3)(E) | kPa | 10 | 11 | 12 | 12 | 13 | 14 | 20 | 22 | 25 | 8 | 9 | 10 | | Additional coil DF - number of rows | | | | 1 | | | 1 | | | 1 | | | 1 | | | Total sound power level DF | (4) | dB(A) | 61 | 64 | 69 | 59 | 63 | 69 | 62 | 67 | 72 | 62 | 67 | 72 | | Inlet + radiated sound power level DF | (4)(E) | dB(A) | 56 | 60 | 66 | 56 | 60 | 66 | 60 | 64 | 70 | 60 | 64 | 70 | | Outlet sound power level DF | (4)(E) | dB(A) | 55 | 59
 65 | 59 | 62 | 65 | 58 | 63 | 69 | 58 | 63 | 69 | ⁽¹⁾ Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (3) Water temperature 65°C/55°C, air temperature 20°C (4) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) ## RATED TECHNICAL DATA 4 PIPES | UTN | | | | 19A | | | 22A | | | 22D | | | 30A | | |---------------------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | | Rated air flow DF | (E) | m³/h | 1143 | 1470 | 1545 | 1423 | 1795 | 2184 | 1468 | 1871 | 2332 | 2065 | 2590 | 3154 | | Available static pressure DF | (E) | Pa | 38 | 50 | 62 | 31 | 50 | 74 | 23 | 50 | 78 | 32 | 50 | 74 | | Power input DF | (E) | W | 290 | 380 | 505 | 370 | 535 | 750 | 370 | 535 | 750 | 870 | 1090 | 1300 | | Total cooling capacity DF | (1)(E) | kW | 7,17 | 8,98 | 10,0 | 9,12 | 11,0 | 12,9 | 8,34 | 10,0 | 11,7 | 12,9 | 15,3 | 17,7 | | Sensible cooling capacity DF | (1)(E) | kW | 5,30 | 6,67 | 8,59 | 6,71 | 8,22 | 9,68 | 6,29 | 7,66 | 9,07 | 9,34 | 11,3 | 13,4 | | FCEER class DF | (E) | | | | | | | | E | | | | | | | Water flow DF | (2) | l/h | 1237 | 1549 | 1732 | 1570 | 1903 | 2216 | 1436 | 1722 | 2010 | 2216 | 2633 | 3041 | | Water pressure drop DF | (2)(E) | kPa | 20 | 30 | 35 | 12 | 16 | 22 | 15 | 21 | 28 | 27 | 37 | 48 | | Heating capacity DF | (3)(E) | kW | 7,80 | 9,80 | 10,8 | 10,6 | 12,3 | 13,9 | 10,9 | 12,6 | 14,4 | 14,8 | 17,0 | 19,2 | | FCCOP class DF | (E) | | | D | | | D | | | D | | | E | | | Water flow DF | (3) | l/h | 1338 | 1679 | 1854 | 916 | 1059 | 1194 | 935 | 1087 | 1242 | 1273 | 1466 | 1652 | | Water pressure drop DF | (3)(E) | kPa | 22 | 29 | 34 | 6 | 8 | 10 | 6 | 8 | 10 | 12 | 16 | 20 | | Additional coil DF - number of rows | | | | 1 | | | 2 | | | 2 | | | 2 | | | Total sound power level DF | (4) | dB(A) | 61 | 67 | 71 | 60 | 67 | 74 | 60 | 67 | 74 | 69 | 73 | 78 | | Inlet + radiated sound power level DF | (4)(E) | dB(A) | 59 | 65 | 69 | 58 | 65 | 72 | 58 | 65 | 72 | 67 | 71 | 76 | | Outlet sound power level DF | (4)(E) | dB(A) | 57 | 63 | 68 | 57 | 64 | 71 | 57 | 64 | 71 | 66 | 70 | 75 | | UTN | | | 30D | | | 40A | | | 40D | | | |---------------------------------------|--------|-------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | min | med | max | min | med | max | | Rated air flow DF | (E) | m³/h | 2083 | 2626 | 3187 | 3345 | 4002 | 4837 | 3073 | 3637 | 4321 | | Available static pressure DF | (E) | Pa | 31 | 50 | 74 | 35 | 50 | 73 | 36 | 50 | 70 | | Power input DF | (E) | W | 870 | 1090 | 1300 | 650 | 820 | 1150 | 650 | 820 | 1150 | | Total cooling capacity DF | (1)(E) | kW | 11,6 | 13,8 | 15,8 | 18,6 | 21,2 | 24,2 | 15,2 | 17,2 | 19,2 | | Sensible cooling capacity DF | (1)(E) | kW | 8,58 | 10,4 | 12,2 | 14,4 | 16,8 | 19,5 | 11,9 | 13,5 | 15,3 | | FCEER class DF | (E) | | | E | | | D | | | E | | | Water flow DF | (2) | l/h | 1996 | 2371 | 2728 | 3297 | 3779 | 4347 | 2722 | 3085 | 3493 | | Water pressure drop DF | (2)(E) | kPa | 24 | 32 | 41 | 16 | 21 | 26 | 17 | 23 | 29 | | Heating capacity DF | (3)(E) | kW | 14,9 | 17,2 | 19,3 | 18,3 | 20,2 | 22,2 | 18,5 | 20,4 | 22,6 | | FCCOP class DF | (E) | | | E | | | D | | | D | | | Water flow DF | (3) | l/h | 1281 | 1478 | 1662 | 1601 | 1766 | 1948 | 1620 | 1790 | 1983 | | Water pressure drop DF | (3)(E) | kPa | 13 | 17 | 21 | 9 | 11 | 13 | 9 | 11 | 13 | | Additional coil DF - number of rows | | | | 2 | | | 2 | | | 2 | | | Total sound power level DF | (4) | dB(A) | 69 | 73 | 78 | 70 | 74 | 79 | 70 | 74 | 79 | | Inlet + radiated sound power level DF | (4)(E) | dB(A) | 67 | 71 | 76 | 68 | 72 | 77 | 68 | 72 | 77 | | Outlet sound power level DF | (4)(E) | dB(A) | 66 | 70 | 75 | 67 | 71 | 76 | 67 | 71 | 76 | ⁽¹⁾ Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) (3) Water temperature 65°C / 55°C, air temperature 20°C (4) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) ## DIMENSIONAL DRAWINGS #### UTN 06 - 19 盟 6A 23.5 23.5 OUT 4DF 6B 4DF 田 | - 1 | ıc | c | E | м | n | |-----|----|---|---|----|---| | | LE | u | E | IV | u | | 1 | No. 6 quick-coupling slots | |-----|---| | 2 | Condensate drainage horizontal installation | | 3 | Condensate drainage vertical installation | | 4 | Water connections on the right | | 4DF | Water connections additional heat exchanger | | 5 | Air outlet | | 6 | Air intake | | 6-A | supply condition | | 6-B | modifiable during installation | | 7 | Circular pre-cut slot (Ø 100 mm) for intake of external air | | | | | A | В | C | D | 4 | 4DF | 2 | 3 | À | |------|------------|--------------------|---|---|--|--|--|---| | mm | mm | mm | mm | | | mm | mm | kg | | 754 | 707 | 676 | 646 | 3/4 | 3/4 | 17 | 17 | 33 | | 964 | 917 | 886 | 856 | 3/4 | 3/4 | 17 | 17 | 42 | | 1174 | 1127 | 1096 | 1066 | 3/4 | 3/4 | 17 | 17 | 49 | | | 754
964 | 754 707
964 917 | 754 707 676 964 917 886 | 754 707 676 646 964 917 886 856 | 754 707 676 646 3/4
964 917 886 856 3/4 | mm mm mm " " 754 707 676 646 3/4 3/4 964 917 886 856 3/4 3/4 | mm mm mm mm " " mm 754 707 676 646 3/4 3/4 17 964 917 886 856 3/4 3/4 17 | mm mm mm mm " " mm mm 754 707 676 646 3/4 3/4 17 17 964 917 886 856 3/4 3/4 17 17 | MODELS 6 AND 6A AVAILABLE ON/OFF VERSION ONLY 6-A 6-B supply condition modifiable during installation Circular pre-cut slot (Ø 100 mm) for intake of external air ## DIMENSIONAL DRAWINGS #### UTN 22 - 40 15 D 6A 277 353 2 4 204 23.5 23.5 135 0UT -OUT 2 13 4DF 375 523 510 506 473 6B 227 274 508 57 88 Ø 100 45 215 7 198 4DF 294 5 45 15 LEGEND No. 6 quick-coupling slots 1 2 Condensate drainage horizontal installation Condensate drainage vertical installation 3 300 300 4 Water connections on the right Water connections additional heat exchanger 4DF Air outlet 5 Air intake 6 | UTN | A | В | C | D | 4 | 4DF | 2 | 3 | Å | |-----------|------|------|------|------|---|-----|----|----|----| | UIN | mm | mm | mm | mm | | | mm | mm | kg | | 22D - 22A | 1174 | 1127 | 1096 | 1066 | 1 | 1 | 17 | 17 | 67 | | 30D - 30A | 1384 | 1337 | 1306 | 1276 | 1 | 1 | 17 | 17 | 80 | | 40D - 40A | 1594 | 1547 | 1516 | 1486 | 1 | 1 | 17 | 17 | 90 | ## High-head thermal ventilating units with EC motor ## **UTN i 4 - 18 kW** ## High efficiency and low noise emissions for ducted applications The thermal ventilating units of the UTN i range with inverter motors and cooling capacities of 4 to 18 kW represent an evolution of the UTN series: keeping in pace with current legislation on energy savings and equipment efficiency and the most recent technological developments in the realm of electric motors, Galletti offers ducted units equipped with inverter-controlled permanent magnet EC motors. This solution makes it possible to reduce electricity consumption by up to 70% compared to a traditional asynchronous motor and at the same time offers the possibility of achieving a precise regulation of air flow, thanks to its ability to vary the number of fan revolutions in a continuous and efficient manner. The particular features which characterize the UTN series, namely, the height of 280 mm to enable the units to be accommodated in false ceilings, flexibility of installation and connection to air ducts and wide selection of accessories, are maintained to ensure the same standards of quality. Moreover, the availability of heat exchangers with a large number of rows makes it possible to use a low-temperature thermal carrier fluid in the heating mode, which means further energy savings. ## PLUS - » Permanent magnet EC motor - » Low electricity consumption - » Easy setup of ventilation section - » Reduced height across the entire range (280 mm) - » Vertical and horizontal installation - » Wide range of available accessories - » High flexibility of installation #### **Comfort and quiet operation** Thanks to the possibility of regulating the rotation speed of the motor with high precision, UTN i is well-suited to interiors where keeping noise levels low is a must. ### **AVAILABLE VERSIONS** **UTXXXILO...0A** Thermal ventilating unit suitable for 2-pipe systems UTXXXILL...0A Thermal ventilating unit suitable for 4-pipe systems (2 heat exchangers) **UTXXXILO...02** The version with double panelling is made with pre-painted sheet steel insulated with class 0 fire-resistant rockwool (On request) ### MAIN COMPONENTS #### Structure Made of galvanized sheet steel insulated with sound-deadening, heat-insulating, self-extinguishing closed-cell material to reduce noise emissions and prevent the formation of condensate on the outside surface.
Heat exchanger It is composed of copper tubing and aluminium fins fixed by expansion. Water connections are reversible An additional exchanger is available for installing the unit in 4-pipe systems. #### Fan The aluminium fans are of the centrifugal type, with double suction and staggered blades to reduce noise emissions. They are statically and dynamically balanced to minimize the stresses transmitted to the motor shaft. #### **Electric motor EC** Permanent magnet motor The unit is equipped with an inverter board to control the motor, that makes it possible to precisely set the maximum rotation speed of the motor (control signal 0-10 V). ## Condensate collection and drainage system It consists of two insulated galvanized sheet steel trays designed for horizontal and vertical installation. ### Filter module The air filter, made of regenerable acrylic fibre, is available as an accessory in filtration classes G2 or G4. | ACCES: | Sories | |-----------------|--| | lectronic mic | roprocessor control panels with display | | DIST | MY COMFORT controller spacer for wall mounting | | EVO-2-TOUCH | 2.8" touch screen user interface for EVO control | | EVOBOARD | Circuit board for EVO control | | VODISP | User interface with display for EVO controller | | YNAVEL | Device for Wi-Fi or Bluetooth communication between EVOBOARD and smartphone | | MCLE | Microprocessor control with display MY COMFORT LARGE | | MCSUE | Humidity sensor for MY COMFORT (medium e large), EVO | | NCSWE | Water sensor for MYCOMFORT and EVO controllers | | lectronic mic | roprocessor control panels | | ΓED 10 | Electronic controller for BLDC fan equipped with inverter and ON/OFF valves 230 V | | ED SWA | Water temperature sensor for TED controls | | ower interfac | ce and regulating louver controllers | | SD | Recess mounted controller for opening and closing the SM motor-driven regulating louver | | Auxiliary wate | r drip trays, insulating shell, condensate drainage pump | | (SC | Condensate drainage pump kit | | lectrical heat | | | RE | Heating element with installation kit, relay box and safety devices | | Air inlet and o | utlet grilles | | GM | Aluminium air outlet grille with 2-row fins and subframe | | iR | Air intake grille with subframe | | iRF | Air intake grille with subframe and filter | | xternal air in | | | PA90 | Motor-driven external air intake louver | | alves | | | /2VDF+STD | 2-way valves, ON/OFF or MUDULATING actuator, 230 V or 24 V power supply, hydraulic kit, for main and additional heat exchanger | | V2VSTD | 2-way valve, ON/OFF or MODULATING actuator, 230 V or 24 V power supply, hydraulic kit, for main heat exchanger | |---------------|---| | V3VDF | 3-way valves, ON/OFF or MODULATING actuator, 230 V or 24 V power supply, hydraulic kit, for additional heat exchanger | | V3VSTD | 2-way valves, ON/OFF or MODULATING actuator, 230 V or 24 V power supply, hydraulic
kit, for main heat exchanger | | VPIC | 2-way valves pressure independent, ON/OFF actuator, 230V power supply, hydraulic kit, for main heat exchanger | | Plenum, air | intake modules, air in let and outlet connectors and cabinets | | G90 | 90° connection for intake/delivery | | MAF | Air intake module with G2 flat air filter | | MAFO | Air intake module with G4 undulated air filter | | PCOC | Junction panel with rectangular duct | | PCOF | Junction panel with flexible circular duct Ø 200 | | Flexible duc | ts - caps | | TFA | Not insulated flexible ducts, Ø 200 mm (6 m lenght undivisible) | | TFM | Insulated flexible ducts, Ø 200 mm (6 m lenght undivisible) | | TP | Plastic cap Ø 200 mm | | Air inlet and | l outlet plenum box | | CA | Air Inlet plenum box with double row grille | | CAF | Air Inlet plenum box with double row grille 300 x 600 mm and filter G2 | | CM | Insulated air outlet plenum box with grille | | Accessories | | | UYBP | Hot water post-heating exchanger kit | | VRCH | Auxiliary water drip tray for horizontal installation units | | VRCV | Auxiliary water drip tray for vertical installation units | | Vibration-da | amping couplings | | GA | Vibration-damping coupling | | GAT | Heat-resistant vibration-damping coupling | ## RATED TECHNICAL DATA 2 PIPES | UTNi | | | | 8A | | | 8D | | | 12A | | | 12D | | |------------------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------| | Speed | • | | min | med | max | | Control voltage | (E) | ٧ | 6,00 | 7,40 | 8,90 | 6,00 | 7,40 | 8,90 | 7,30 | 8,00 | 8,80 | 7,30 | 8,00 | 8,80 | | Rated air flow | (E) | m³/h | 532 | 692 | 791 | 534 | 700 | 802 | 1000 | 1107 | 1203 | 1019 | 1134 | 1238 | | Available static pressure | (E) | Pa | 30 | 50 | 65 | 29 | 50 | 65 | 41 | 50 | 59 | 40 | 50 | 59 | | Power input | (E) | W | 40 | 73 | 133 | 40 | 73 | 112 | 102 | 125 | 152 | 102 | 125 | 170 | | Total cooling capacity | (1)(E) | kW | 3,38 | 4,20 | 4,65 | 2,83 | 3,47 | 3,80 | 5,78 | 6,25 | 6,65 | 5,22 | 5,65 | 6,01 | | Sensible cooling capacity | (1)(E) | kW | 2,54 | 3,19 | 3,56 | 2,19 | 2,70 | 2,98 | 4,35 | 4,73 | 5,04 | 3,90 | 4,20 | 4,47 | | FCEER class | (E) | | | В | | | C | | | C | | | C | | | Water flow | (2) | l/h | 582 | 723 | 801 | 487 | 598 | 654 | 995 | 1076 | 1145 | 899 | 973 | 1035 | | Water pressure drop | (2)(E) | kPa | 8 | 12 | 14 | 10 | 14 | 17 | 15 | 17 | 19 | 18 | 21 | 24 | | Heating capacity | (3)(E) | kW | 3,55 | 4,36 | 4,83 | 3,04 | 3,69 | 4,05 | 6,29 | 6,80 | 7,26 | 5,59 | 6,03 | 6,42 | | FCCOP class | | | | В | | | В | | | C | | | C | | | Water flow | (3) | l/h | 611 | 751 | 832 | 523 | 635 | 697 | 1083 | 1171 | 1250 | 963 | 1038 | 1106 | | Water pressure drop | (3)(E) | kPa | 7 | 11 | 13 | 9 | 13 | 15 | 14 | 17 | 18 | 17 | 19 | 22 | | Standard coil - number of rows | | | | 4 | | | 3 | | | 4 | | | 3 | | | Total sound power level | (4) | dB(A) | 54 | 61 | 66 | 54 | 61 | 66 | 61 | 63 | 69 | 59 | 63 | 69 | | Inlet + radiated sound power level | (4)(E) | dB(A) | 52 | 59 | 64 | 52 | 59 | 64 | 56 | 60 | 66 | 56 | 60 | 66 | | Outlet sound power level | (4)(E) | dB(A) | 51 | 58 | 63 | 51 | 58 | 63 | 59 | 59 | 65 | 55 | 59 | 65 | | UTNi | | | | 16A | | 16D | | | 19A | | | 22A | | | |------------------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | | Control voltage | (E) | ٧ | 6,70 | 7,70 | 8,90 | 6,70 | 7,70 | 8,90 | 6,60 | 8,00 | 9,00 | 3,80 | 5,90 | 7,90 | | Rated air flow | (E) | m³/h | 1198 | 1371 | 1581 | 1207 | 1384 | 1606 | 1166 | 1500 | 1577 | 1436 | 1819 | 2222 | | Available static pressure | (E) | Pa | 38 | 50 | 66 | 38 | 50 | 67 | 38 | 50 | 62 | 31 | 50 | 75 | | Power input | (E) | W | 124 | 170 | 248 | 124 | 170 | 248 | 109 | 190 | 247 | 135 | 210 | 407 | | Total cooling capacity | (1)(E) | kW | 6,84 | 7,62 | 8,49 | 6,20 | 6,84 | 7,57 | 7,50 | 9,36 | 10,4 | 9,43 | 11,5 | 13,6 | | Sensible cooling capacity | (1)(E) | kW | 5,40 | 6,07 | 6,83 | 5,01 | 5,60 | 6,29 | 7,35 | 9,17 | 10,3 | 6,99 | 8,65 | 10,3 | | FCEER class | (E) | | | C | | | C | | | C | | | В | | | Water flow | (2) | l/h | 1178 | 1312 | 1462 | 1068 | 1178 | 1304 | 1289 | 1663 | 1789 | 1644 | 2010 | 2366 | | Water pressure drop | (2)(E) | kPa | 11 | 13 | 16 | 17 | 20 | 24 | 20 | 31 | 36 | 12 | 17 | 22 | | Heating capacity | (3)(E) | kW | 7,28 | 8,04 | 8,93 | 6,47 | 7,11 | 7,88 | 7,94 | 9,96 | 11,0 | 9,73 | 11,7 | 13,7 | | FCCOP class | | | | C | | | C | | | В | | | В | | | Water flow | (3) | l/h | 1254 | 1384 | 1538 | 1114 | 1224 | 1357 | 1365 | 1715 | 1857 | 1676 | 2020 | 2354 | | Water pressure drop | (3)(E) | kPa | 10 | 12 | 14 | 15 | 17 | 21 | 22 | 29 | 34 | 10 | 14 | 19 | | Standard coil - number of rows | | | | 4 | | | 3 | | | 4 | | | 4 | | | Total sound power level | (4) | dB(A) | 62 | 67 | 72 | 62 | 67 | 72 | 61 | 67 | 71 | 60 | 67 | 74 | | Inlet + radiated sound power level | (4)(E) | dB(A) | 60 | 64 | 70 | 60 | 64 | 70 | 59 | 65 | 69 | 58 | 65 | 72 | | Outlet sound power level | (4)(E) | dB(A) | 58 | 63 | 69 | 58 | 63 | 69 | 57 | 63 | 68 | 57 | 64 | 71 | ⁽¹⁾ Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) (3) Water temperature 45°C / 40°C, air temperature 20°C (4) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) NOTE: The dimensional drawings of the UTN i inverter units are the same of the UTN ON/OFF version. They are reported from page 126 ## RATED TECHNICAL DATA 2 PIPES | UTNI | | | | 22D | | | 30A | | | 30D | | |------------------------------------|--------|-------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | min | med | max | min | med | max | | Control voltage | (E) | ٧ | 3,90 | 6,10 | 8,30 | 3,60 | 5,50 | 7,20 | 3,60 | 5,60 | 7,20 | | Rated air flow | (E) | m³/h | 1483 | 1898 | 2376 | 2074 | 2604 | 3174 | 2092 | 2641 | 3207 | | Available static pressure | (E) | Pa | 30 | 50 | 78 | 32 | 50 | 74 | 31 | 50 | 74 | | Power input | (E) | W | 140 | 220 | 320 | 195 | 310 | 512 | 200 | 320 | 445 | | Total cooling capacity | (1)(E) | kW | 8,64 | 10,4 | 12,2 | 13,6 | 16,2 | 18,6 | 12,3 | 14,6 | 16,8 | | Sensible cooling capacity | (1)(E) | kW | 6,58 | 8,07 | 9,66 | 10,1 | 12,2 | 14,3 | 9,29 | 11,2 | 13,0 | | FCEER class | (E) | | | C | | | В | | | C | | | Water flow | (2) | l/h | 1509 | 1827 | 2163 | 2365 | 2823 | 3270 | 2145 | 2561 | 2953 | | Water pressure drop | (2)(E) | kPa | 15 | 21 | 29 | 27 | 37 | 48 | 21 | 29 | 37 | | Heating capacity | (3)(E) | kW | 9,06 | 10,8 | 12,7 | 13,7 | 16,4 | 19,1 | 12,7 | 15,0 |
17,3 | | FCCOP class | | | | C | | | В | | | C | | | Water flow | (3) | l/h | 1560 | 1867 | 2190 | 2359 | 2824 | 3289 | 2183 | 2592 | 2977 | | Water pressure drop | (3)(E) | kPa | 14 | 19 | 25 | 23 | 32 | 41 | 18 | 25 | 31 | | Standard coil - number of rows | | | | 3 | | | 5 | | | 4 | | | Total sound power level | (4) | dB(A) | 60 | 67 | 74 | 69 | 73 | 78 | 69 | 73 | 78 | | Inlet + radiated sound power level | (4)(E) | dB(A) | 58 | 65 | 72 | 67 | 71 | 76 | 67 | 71 | 76 | | Outlet sound power level | (4)(E) | dB(A) | 57 | 64 | 71 | 66 | 70 | 75 | 66 | 70 | 75 | - (1) Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) (3) Water temperature 45°C / 40°C, air temperature 20°C (4) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) ## RATED TECHNICAL DATA 4 PIPES | UTNi | | | | 8A | | | 8D | | | 12A | | | 12D | | |---------------------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | | Control voltage | (E) | ٧ | 6,00 | 7,40 | 8,90 | 6,00 | 7,40 | 8,90 | 7,30 | 8,00 | 8,80 | 7,30 | 8,00 | 8,80 | | Rated air flow DF | (E) | m³/h | 529 | 686 | 783 | 531 | 694 | 793 | 985 | 1088 | 1182 | 1005 | 1115 | 1211 | | Available static pressure DF | (E) | Pa | 30 | 50 | 65 | 29 | 50 | 65 | 41 | 50 | 59 | 41 | 50 | 59 | | Power input DF | (E) | W | 40 | 73 | 112 | 45 | 73 | 112 | 102 | 125 | 152 | 102 | 125 | 152 | | Total cooling capacity DF | (1)(E) | kW | 3,36 | 4,17 | 4,61 | 2,82 | 3,44 | 3,76 | 5,71 | 6,17 | 6,55 | 5,17 | 5,58 | 5,91 | | Sensible cooling capacity DF | (1)(E) | kW | 2,52 | 3,17 | 3,53 | 2,18 | 2,68 | 2,95 | 4,30 | 4,66 | 4,97 | 3,84 | 4,15 | 4,39 | | FCEER class DF | (E) | | | В | | | C | | | C | | | C | | | Water flow DF | (2) | l/h | 579 | 718 | 794 | 486 | 592 | 647 | 983 | 1062 | 1128 | 890 | 961 | 1018 | | Water pressure drop DF | (2)(E) | kPa | 8 | 12 | 14 | 10 | 14 | 17 | 15 | 17 | 19 | 18 | 21 | 23 | | Heating capacity DF | (3)(E) | kW | 3,23 | 3,66 | 3,89 | 3,23 | 3,68 | 3,91 | 5,21 | 5,45 | 5,65 | 5,25 | 5,51 | 5,72 | | FCCOP class DF | (E) | | | В | | | В | | | В | | | C | | | Water flow DF | (3) | l/h | 278 | 315 | 355 | 278 | 317 | 337 | 449 | 469 | 486 | 452 | 474 | 492 | | Water pressure drop DF | (3)(E) | kPa | 5 | 6 | 7 | 5 | 6 | 7 | 10 | 11 | 12 | 12 | 13 | 14 | | Additional coil DF - number of rows | | | | 1 | | | 1 | | | 1 | | | 1 | | | Total sound power level DF | (4) | dB(A) | 54 | 61 | 66 | 54 | 61 | 66 | 61 | 64 | 69 | 59 | 63 | 69 | | Inlet + radiated sound power level DF | (4)(E) | dB(A) | 52 | 59 | 64 | 52 | 59 | 64 | 56 | 60 | 66 | 56 | 60 | 66 | | Outlet sound power level DF | (4)(E) | dB(A) | 51 | 58 | 63 | 51 | 58 | 63 | 55 | 59 | 65 | 55 | 59 | 65 | | UTNi | JTN i | | | 16A | | | 16D | | | 19A | | | 22A | | | |---------------------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------|--| | Speed | | | min | med | max | | | Control voltage | (E) | ٧ | 6,70 | 7,70 | 8,90 | 7,00 | 7,70 | 8,90 | 6,60 | 8,00 | 9,00 | 3,80 | 5,90 | 7,90 | | | Rated air flow DF | (E) | m³/h | 1184 | 1349 | 1550 | 991 | 1094 | 1212 | 1143 | 1470 | 1545 | 1423 | 1795 | 2184 | | | Available static pressure DF | (E) | Pa | 38 | 50 | 66 | 38 | 50 | 61 | 38 | 50 | 62 | 31 | 50 | 74 | | | Power input DF | (E) | W | 137 | 198 | 294 | 124 | 170 | 248 | 109 | 190 | 247 | 138 | 210 | 305 | | | Total cooling capacity DF | (1)(E) | kW | 6,77 | 7,52 | 8,35 | 6,14 | 6,75 | 7,46 | 5,62 | 7,00 | 9,10 | 9,35 | 11,3 | 13,3 | | | Sensible cooling capacity DF | (1)(E) | kW | 5,34 | 5,98 | 6,71 | 4,96 | 5,52 | 6,19 | 5,44 | 6,86 | 8,85 | 6,94 | 8,55 | 10,1 | | | FCEER class DF | (E) | | | C | | | C | | | C | | | В | | | | Water flow DF | (2) | I/h | 1166 | 1295 | 1438 | 1057 | 1162 | 1285 | 1268 | 1582 | 1777 | 1631 | 1987 | 2336 | | | Water pressure drop DF | (2)(E) | kPa | 15 | 20 | 23 | 16 | 19 | 23 | 20 | 31 | 36 | 12 | 16 | 22 | | | Heating capacity DF | (3)(E) | kW | 6,99 | 7,44 | 7,94 | 7,02 | 7,47 | 7,99 | 7,80 | 9,80 | 10,8 | 10,6 | 12,3 | 13,9 | | | FCCOP class DF | (E) | | | C | | | C | | | В | | | В | | | | Water flow DF | (3) | l/h | 602 | 641 | 684 | 604 | 643 | 688 | 1338 | 1679 | 1854 | 916 | 1059 | 1194 | | | Water pressure drop DF | (3)(E) | kPa | 20 | 22 | 25 | 22 | 24 | 27 | 22 | 29 | 34 | 6 | 8 | 10 | | | Additional coil DF - number of rows | | | | 1 | | | 1 | | | 1 | | | 2 | | | | Total sound power level DF | (4) | dB(A) | 62 | 67 | 72 | 62 | 67 | 72 | 61 | 67 | 71 | 60 | 67 | 74 | | | Inlet + radiated sound power level DF | (4)(E) | dB(A) | 60 | 64 | 70 | 60 | 64 | 70 | 59 | 65 | 69 | 61 | 65 | 72 | | | Outlet sound power level DF | (4)(E) | dB(A) | 58 | 63 | 69 | 58 | 63 | 69 | 57 | 63 | 68 | 57 | 64 | 71 | | ⁽¹⁾ Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) (3) Water temperature 65°C/55°C, air temperature 20°C (4) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) NOTE: The dimensional drawings of the UTN i inverter units are the same of the UTN ON/OFF version. They are reported from page 126 ## RATED TECHNICAL DATA 4 PIPES | UTNI | | | | 22D | | | 30A | | | 30D | | |---------------------------------------|--------|-------|------|------|------|------|------|------|------|------|------| | Speed | | | min | med | max | min | med | max | min | med | max | | Control voltage | (E) | ٧ | 3,90 | 6,10 | 8,30 | 3,60 | 5,50 | 7,20 | 3,60 | 5,60 | 7,20 | | Rated air flow DF | (E) | m³/h | 1468 | 1871 | 2332 | 2065 | 2590 | 3154 | 2083 | 2626 | 3187 | | Available static pressure DF | (E) | Pa | 30 | 50 | 78 | 32 | 50 | 74 | 31 | 50 | 74 | | Power input DF | (E) | W | 144 | 220 | 317 | 221 | 345 | 441 | 223 | 350 | 596 | | Total cooling capacity DF | (1)(E) | kW | 8,56 | 10,3 | 12,1 | 13,6 | 16,0 | 18,6 | 12,2 | 14,5 | 16,6 | | Sensible cooling capacity DF | (1)(E) | kW | 6,51 | 7,98 | 9,50 | 9,99 | 12,0 | 14,3 | 9,23 | 11,1 | 13,0 | | FCEER class DF | (E) | | | C | | | | | C | | | | Water flow DF | (2) | l/h | 1493 | 1808 | 2130 | 2358 | 2811 | 3254 | 2138 | 2550 | 2940 | | Water pressure drop DF | (2)(E) | kPa | 15 | 21 | 28 | 27 | 37 | 48 | 21 | 28 | 36 | | Heating capacity DF | (3)(E) | kW | 10,9 | 12,6 | 14,4 | 14,8 | 17,0 | 19,2 | 14,9 | 17,2 | 19,3 | | FCCOP class DF | (E) | | | В | | | | | (| | | | Water flow DF | (3) | l/h | 935 | 1087 | 1242 | 1273 | 1466 | 1652 | 1281 | 1478 | 1662 | | Water pressure drop DF | (3)(E) | kPa | 6 | 8 | 10 | 13 | 16 | 20 | 13 | 17 | 21 | | Additional coil DF - number of rows | | | | 2 | | | 2 | | | 2 | | | Total sound power level DF | (4) | dB(A) | 60 | 67 | 74 | 69 | 73 | 78 | 69 | 73 | 78 | | Inlet + radiated sound power level DF | (4)(E) | dB(A) | 58 | 65 | 72 | 67 | 71 | 76 | 67 | 71 | 76 | | Outlet sound power level DF | (4)(E) | dB(A) | 57 | 64 | 71 | 66 | 70 | 75 | 66 | 70 | 75 | ⁽¹⁾ Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) according to EN1397:2021 (2) Water temperature 7°C / 12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) (3) Water temperature 65°C / 55°C, air temperature 20°C (4) Sound power measured according to standards ISO 3741 and ISO 3742 (E) EUROVENT certified data Power supply 230-1-50 (V-ph-Hz) # FH - FAN HEATERS **AREO** p.136 **AREOi** p.146 **DST** p.150 # Air conditioning fan heaters with ON/OFF motor ## **AREO 8 - 101 kW** installation stallation (not Cooling (only for AERO C) ## Hygrothermal comfort in the industrial and commercial sectors In line with recent regulatory developments regarding energy efficiency, Galletti is updating its offering of fan heaters for heating and cooling systems to be used in industrial and commercial environments of any volume. The new AREO, which was designed to meet the stringent requirements of the ERP Directive, retains unchanged the distinctive aspects of the original design, that is, extreme reliability and sturdiness. AREO's cover, which is made of pre-painted steel sheet, possesses an original design with a rounded shape that enhances its aesthetic form. The AREO range consists of 16 models that, limited to the only heating version, can be either wall mounted (horizontal air flow) or ceiling mounted (vertical air flow). The cooling version is equipped with a new system in order to collect condensation and further insulation inside the cover. The units are available in 6 sizes with 2-, 3- or 4-row heat exchangers ensuring an efficient performance with hot water supplied by a boiler or heat pump (4-row models). ## **PLUS** - » Low sound levels - » Wide operating range (up to 60 °C intake air) - » Axial fan with blades with an aerodynamic profile (HyBlade® technology) - » Electric motor, class F, approved for continuous operation - » Wide operating range (up to 60 °C intake air) ### **AVAILABLE VERSIONS** Single-phase and three-phase power supply. #### Fan heaters for hot water heating, with side water connections. for replacement of indoor units er, ceiling mounted. installed in existing systems. #### AREO L Fan heaters for hot water heating, Fan heaters for hot water heating, Single phase power supplied fan with vertical water connections, equipped with air-curtain diffus- heaters suitable either for heat- #### AREO C ing or cooling mode, equipped with asynchronus electric motor and side water connections, wall mounted ### MAIN COMPONENTS #### Fan drive assembly The motor and fan are a single integrated unit optimized to achieve maximum aeraulic efficiency. In fact,
conformity to ERP is guaranteed, even for the versions with single-phase power supply. #### **Electric motor** Tropicalized motor directly coupled to an external rotor, standard, with the following features: - equipped with internal thermal protection - windings in class F - · protection rating IP54 - maintenance-free ball bearings #### **Axial fan** With blades with an optimized aerodynamic profile (HyBlade® technology), statically balanced, inserted in a housing that enhances aeraulic performance and minimizes noise. #### **Cabinet** Made of pre-painted steel sheet, complete with ABS corners, and manually adjustable aluminum baffles located on the air outlet for optimum distribution in the room to be heated. #### Safety cage Made of electrogalvanised steel wire, it supports the motor and is fixed to the cabinet by means of vibration-damping supports. ### **Heat exchanger** Made of copper pipes and aluminium fins of high thermal conductivity to optimize heat exchange. ### RVM regulator for ventilation speed adjustment in single phase power supplied models The speed regulator RVM can vary the effective value on the load by controlling the wave shape caused by a TRIAC. This accessory can be used only coupled to single phase power supplied models, and allows a fan heater manual ventilation speed adjustment depending on different needs. The device is also equipped with special filters in order to suppress noise induced on the supplied line or irradiated from the equipment and a minimum speed manually adjustable trimmer. This accessory is yet included with AREO C cooling series. RVM manual power regulator for monophase power supply FAN HEATERS (not available for frame 5). | ACCE | ESSORIES | |-------------|---| | Elecrome | hanical control panels | | CST | Delta/star switch for installation in electrical box | | CSTP | Delta/star switch with box wall mounted | | RVM | RVM manual power regulator for monophase power supply FAN HEATERS (not available for frame 5) | | TA2 | Electromechanical room thermostat with summer/winter selection | | Power into | erface and regulating louver controllers | | CSD | Recess mounted controller for opening and closing the SM motor-driven regulating louver | | Accessorie | S | | VA | Auxiliary tray for collecting condensate | | Fixation to | emplates | | DFC | Template for column installation | | | | | DFO | Adjustable template for wall/column installation | |-----------------|---| | | , , | | DFP | Template for wall installation | | Protective gril | l for gyms (ball shield) | | R | Protective net for gyms | | Diffusors | | | DO | Two-row adjustable fin diffuser | | LA | Air curtain diffuser | | External air in | take | | PAE | External air intake | | PAEM | Manual mixing louver | | PAEMM | Motor driven mixer louver, 24 V power supply with spring return | | External air in | take rain protection grille | | GR | Air intake grille with subframe | ## RATED TECHNICAL DATA AREO P - HEATING MODE | AREO P | | | 12 | 12 | 13 | 13 | 14 | 14 | |---------------------|-----|---------|--------------|--------------|--------------|--------------|--------------|--------------| | Power supply | | V-ph-Hz | | | | 1 - 50 | | | | no. of poles | | - P2 | 4 | 6 | 4 | 6 | 4 | 6 | | Motor conncections | | | Mono | Mono | Mono | Mono | Mono | Mono | | Rated air flow | | m³/h | 1280 | 1000 | 1140 | 900 | 1040 | 800 | | Heating capacity | (1) | kW | 9,77 | 8,48 | 12,4 | 10,7 | 14,2 | 11,9 | | Water flow | (1) | I/h | 863 | 749 | 1097 | 946 | 1252 | 1047 | | Water pressure drop | (1) | kPa | 29 | 23 | 22 | 17 | 17 | 12 | | Sound power level | (2) | dB(A) | 64 | 59 | 64 | 59 | 65 | 60 | | Power input | (2) | W | 69 | 49 | 69 | 50 | 70 | 51 | | AREO P | | | 22 | 22 | 23 | 23 | 24 | 24 | | | | V ph Uz | 22 | 22 | | | 24 | 24 | | Power supply | | V-ph-Hz | 4 | | 1 | 1-50 | | | | no. of poles | | | 4 | 6 | 4 | 6 | 4 | 6 | | Motor conncections | | 3.0 | Mono | Mono | Mono | Mono | Mono | Mono | | Rated air flow | (-) | m³/h | 3020 | 2100 | 2630 | 1850 | 2600 | 1800 | | Heating capacity | (1) | kW | 19,9 | 16,2 | 25,6 | 20,6 | 28,9 | 22,9 | | Water flow | (1) | I/h | 1754 | 1432 | 2256 | 1820 | 2555 | 2022 | | Water pressure drop | (1) | kPa | 23 | 16 | 29 | 20 | 19 | 13 | | Sound power level | (2) | dB(A) | 76 | 64 | 76 | 65 | 77 | 65 | | Power input | | W | 198 | 110 | 210 | 114 | 212 | 120 | | AREO P | | | 32 | 32 | 32 | 33 | 33 | 33 | | Power supply | | V-ph-Hz | 230 - 1 - 50 | 400 - 3 - 50 | 400 - 3 - 50 | 230 - 1 - 50 | 400 - 3 - 50 | 400 - 3 - 50 | | no. of poles | | | 4 | 4 | 6 | 4 | 4 | 6 | | Motor conncections | | | Mono | Delta | Star | Mono | Delta | Star | | Rated air flow | | m³/h | 4500 | 4300 | 3200 | 4150 | 4000 | 2900 | | Heating capacity | (1) | kW | 35,6 | 34,7 | 29,2 | 39,5 | 38,6 | 31,8 | | Water flow | (1) | l/h | 3143 | 3060 | 2579 | 3486 | 3411 | 2806 | | Water pressure drop | (1) | kPa | 20 | 19 | 14 | 18 | 17 | 12 | | Sound power level | (2) | dB(A) | 76 | 76 | 69 | 76 | 76 | 69 | | Power input | | W | 320 | 315 | 175 | 340 | 330 | 180 | | AREO P | | | 34 | 34 | 34 | 42 | 42 | 42 | | Power supply | | V-ph-Hz | 230 - 1 - 50 | 400 - 3 - 50 | 400 - 3 - 50 | 230 - 1 - 50 | 400 - 3 - 50 | 400 - 3 - 50 | | no. of poles | | | 4 | 4 | 6 | 4 | 4 | 6 | | Motor conncections | | | Mono | Delta | Star | Mono | Delta | Star | | Rated air flow | | m³/h | 4050 | 3900 | 2800 | 6900 | 7100 | 5600 | | Heating capacity | (1) | kW | 45,1 | 44,0 | 35,6 | 53,4 | 54,3 | 47,4 | | Water flow | (1) | l/h | 3980 | 3886 | 3145 | 4718 | 4793 | 4185 | | Water pressure drop | (1) | kPa | 29 | 28 | 19 | 37 | 38 | 30 | | Sound power level | (2) | dB(A) | 77 | 77 | 70 | 75 | 73 | 67 | | Power input | | W | 345 | 340 | 182 | 623 | 650 | 450 | | AREO P | | | 43 | 43 | 43 | 44 | 44 | 44 | | Power supply | | V-ph-Hz | 230 - 1 - 50 | 400 - 3 - 50 | 400 - 3 - 50 | 230 - 1 - 50 | 400 - 3 - 50 | 400 - 3 - 50 | | no. of poles | | | 4 | 4 | 6 | 4 | 4 | 6 | | Motor conncections | | | Mono | Delta | Star | Mono | Delta | Star | | Rated air flow | | m³/h | 6400 | 6550 | 5300 | 6200 | 6400 | 5150 | | Heating capacity | (1) | kW | 59,6 | 60,4 | 53,2 | 66,8 | 68,1 | 59,5 | | Water flow | (1) | I/h | 5259 | 5329 | 4695 | 5894 | 6009 | 5250 | | Water pressure drop | (1) | kPa | 36 | 37 | 30 | 23 | 24 | 19 | | Sound power level | (2) | dB(A) | 74 | 74 | 68 | 75 | 75 | 69 | | Power input | (4) | W | 635 | 690 | 465 | 655 | 700 | 470 | | 1 Owel Illput | | VV | 033 | 070 | TUJ | 000 | 700 | 7/0 | ⁽¹⁾ Water temperature 85°C / 75°C, air temperature 15°C - 100% of the max speed (2) Sound power measured according to standards ISO 3741 - 100% of the max speed ## RATED TECHNICAL DATA AREO P - HEATING MODE | AREO P | | | 53 | 53 | 53 | 54 | 54 | 54 | |---------------------|-----|---------|--------------|--------------|--------------|--------------|--------------|--------------| | Power supply | | V-ph-Hz | 230 - 1 - 50 | 400 - 3 - 50 | 400 - 3 - 50 | 230 - 1 - 50 | 400 - 3 - 50 | 400 - 3 - 50 | | no. of poles | | | 6 | 4 | 6 | 6 | 4 | 6 | | Motor conncections | | | Mono | Delta | Star | Mono | Delta | Star | | Rated air flow | | m³/h | 6200 | 7900 | 6450 | 5900 | 7600 | 6200 | | Heating capacity | (1) | kW | 60,8 | 70,2 | 62,3 | 66,2 | 77,4 | 68,3 | | Water flow | (1) | l/h | 5373 | 6202 | 5497 | 5852 | 6834 | 6033 | | Water pressure drop | (1) | kPa | 19 | 25 | 20 | 21 | 27 | 22 | | Sound power level | (2) | dB(A) | 69 | 76 | 72 | 71 | 77 | 73 | | Power input | | W | 374 | 732 | 775 | 380 | 755 | 780 | | AREO P | | | 63 | 63 | 63 | 64 | 64 | 64 | |---------------------|-----|---------|--------------|--------------|--------------|--------------|--------------|--------------| | Power supply | | V-ph-Hz | 230 - 1 - 50 | 400 - 3 - 50 | 400 - 3 - 50 | 230 - 1 - 50 | 400 - 3 - 50 | 400 - 3 - 50 | | no. of poles | | | 6 | 6 | 8 | 6 | 6 | 8 | | Motor conncections | | | Mono | Delta | Star | Mono | Delta | Star | | Rated air flow | | m³/h | 8100 | 8300 | 6500 | 7500 | 7650 | 6000 | | Heating capacity | (1) | kW | 99,7 | 101 | 86,4 | 99,6 | 101 | 85,8 | | Water flow | (1) | I/h | 8802 | 8943 | 7626 | 8795 | 8913 | 7571 | | Water pressure drop | (1) | kPa | 29 | 30 | 23 | 29 | 29 | 22 | | Sound power level | (2) | dB(A) | 65 | 72 | 67 | 71 | 72 | 67 | | Power input | | W | 560 | 575 | 380 | 582 | 590 | 390 | ⁽¹⁾ Water temperature 85° C / 75° C, air temperature 15° C - 100% of the max speed (2) Sound power measured according to standards $150\,3741$ - 100% of the max speed ## RATED TECHNICAL DATA AREO C - HEATING MODE | AREO C | | | 12 | 12 | 13 | 13 | 14 | 14 | 22 | 22 | |---------------------------|-----|---------|------|------|------|-------|--------|------|------|------| | Power supply | | V-ph-Hz | | | | 230 - | 1 - 50 | • | | - | | no. of poles | | | 4 | 6 | 4 | 6 | 4 | 6 | 4 | 6 | | Air flow rate max heating | | m³/h | 1280 | 1000 | 1140 | 900 | 1040 | 800 | 3020 | 2100 | | Heating capacity | (1) | kW | 9,77 | 8,48 | 12,4 | 10,7 | 14,2 | 11,9 | 19,9 | 16,2 | | Water flow | (1) | l/h | 863 | 749 | 1097 | 946 | 1252 | 1047 | 1754 | 1432 | | Water pressure drop | (1) | kPa | 29 | 23 | 22 | 17 | 17 | 12 | 23 | 16 | | Sound power level | (2) | dB(A) | 64 | 59 | 64 | 59 | 65 | 60 | 76 | 64 | | Power input | (3) | W | 67 | 49 | 69 | 50 | 70 | 51 | 198 | 110 | | AREO C | | | 23 | 23 | 24 | 24 | 32 | 33 | 34 | 42 | | Power supply | | V-ph-Hz | | | | 230 - | 1 - 50 | | • | • | | no. of poles | | | 4 | 6 | 4 | 6 | 4 | 4 | 4 | 4 | | Air flow rate max heating | | m³/h | 2630 | 1850 | 2600 | 1800 | 4500 | 4150 | 4050 | 6900 | | Heating capacity | (1) | kW | 25,6 | 20,6 | 28,9 | 22,9 | 35,6 | 39,5 | 45,1 | 53,4 | | Water flow | (1) | l/h | 2256 | 1820 | 2555 | 2022 | 3143 | 3486 | 3980 | 4718 | | Water pressure drop | (1) | kPa | 29 | 20 | 19 | 13 | 20 | 18 | 29 | 37 | | Sound power level | (2)
| dB(A) | 76 | 65 | 77 | 65 | 76 | 76 | 77 | 75 | 212 120 320 340 345 623 | AREO C | | | 43 | 44 | 63 | 64 | | | |---------------------------|-----|---------|--------------|------|------|------|--|--| | Power supply | | V-ph-Hz | 230 - 1 - 50 | | | | | | | no. of poles | | | 4 | 4 | 6 | 6 | | | | Air flow rate max heating | | m³/h | 6400 | 6200 | 7695 | 7500 | | | | Heating capacity | (1) | kW | 59,6 | 66,8 | 79,3 | 99,6 | | | | Water flow | (1) | I/h | 5259 | 5894 | 8802 | 8795 | | | | Water pressure drop | (1) | kPa | 36 | 23 | 29 | 29 | | | | Sound power level | (2) | dB(A) | 74 | 75 | 69 | 71 | | | | Power input | (3) | W | 635 | 655 | 560 | 582 | | | 210 114 (3) W Power input Water temperature 85°C/75°C, air temperature 15°C - 100% of the max speed Sound power measured according to standards ISO 3741 - 100% of the max speed Referred to maximum speed ## RATED TECHNICAL DATA AREO C - COOLING MODE | AREO C | | | 12 | 12 | 13 | 13 | 14 | 14 | 22 | 22 | |---------------------------|-----|---------|------|------|------|-------|------|------|------|------| | Power supply | | V-ph-Hz | | | | 230 - | 1-50 | | | | | no. of poles | | | 4 | 6 | 4 | 6 | 4 | 6 | 4 | 6 | | Air flow rate max cooling | | m³/h | 898 | 898 | 808 | 808 | 718 | 718 | 1602 | 1602 | | Heating capacity | (1) | kW | 7,87 | 7,87 | 10,0 | 10,0 | 11,2 | 11,2 | 13,4 | 13,4 | | Water flow | (1) | l/h | 695 | 695 | 884 | 884 | 988 | 988 | 1184 | 1184 | | Water pressure drop | (1) | kPa | 18 | 18 | 13 | 13 | 10 | 10 | 9 | 9 | | Total cooling capacity | (2) | kW | 2,30 | 2,30 | 2,82 | 2,82 | 3,15 | 3,15 | 3,61 | 3,61 | | Sensible cooling capacity | (2) | kW | 1,81 | 1,81 | 2,23 | 2,23 | 2,45 | 2,45 | 3,08 | 3,08 | | Water flow | (2) | I/h | 395 | 395 | 482 | 482 | 541 | 541 | 620 | 620 | | Water pressure drop | (2) | kPa | 9 | 9 | 6 | 6 | 5 | 5 | 4 | 4 | | Sound power level | (3) | dB(A) | 53 | 54 | 53 | 54 | 54 | 55 | 58 | 59 | | Power input | (4) | W | 33 | 34 | 33 | 34 | 33 | 34 | 95 | 81 | | AREO C | | | 23 | 23 | 24 | 24 | 32 | 33 | 34 | 42 | |---------------------------|-----|---------|------|------|------|-------|--------|------|------|------| | Power supply | | V-ph-Hz | | | | 230 - | 1 - 50 | | | | | no. of poles | | | 4 | 6 | 4 | 6 | 4 | 4 | 4 | 4 | | Air flow rate max cooling | | m³/h | 1411 | 1411 | 1373 | 1373 | 2485 | 2292 | 2237 | 3738 | | Heating capacity | (1) | kW | 17,3 | 17,3 | 19,1 | 19,1 | 22,9 | 25,4 | 29,1 | 35,1 | | Water flow | (1) | l/h | 1527 | 1527 | 1686 | 1686 | 2024 | 2242 | 2569 | 3098 | | Water pressure drop | (1) | kPa | 15 | 15 | 5 | 5 | 5 | 5 | 8 | 7 | | Total cooling capacity | (2) | kW | 5,00 | 5,00 | 5,23 | 5,23 | 5,72 | 7,22 | 9,65 | 9,72 | | Sensible cooling capacity | (2) | kW | 3,91 | 3,91 | 4,20 | 4,20 | 5,23 | 6,12 | 7,50 | 7,85 | | Water flow | (2) | l/h | 860 | 860 | 898 | 898 | 982 | 1239 | 1656 | 1668 | | Water pressure drop | (2) | kPa | 7 | 7 | 2 | 2 | 1 | 1 | 4 | 2 | | Sound power level | (3) | dB(A) | 63 | 60 | 59 | 60 | 63 | 63 | 64 | 62 | | Power input | (4) | W | 95 | 81 | 95 | 81 | 153 | 153 | 153 | 400 | | AREO C | | | 43 | 44 | 63 | 64 | | | | |---------------------------|-----|---------|------|--------------|------|------|--|--|--| | Power supply | | V-ph-Hz | | 230 - 1 - 50 | | | | | | | no. of poles | | | 4 | 4 | 6 | 6 | | | | | Air flow rate max cooling | | m³/h | 3467 | 3359 | 4232 | 4125 | | | | | Heating capacity | (1) | kW | 39,2 | 43,9 | 48,0 | 64,7 | | | | | Water flow | (1) | l/h | 3460 | 3875 | 4240 | 5715 | | | | | Water pressure drop | (1) | kPa | 7 | 3 | 8 | 8 | | | | | Total cooling capacity | (2) | kW | 12,4 | 13,1 | 18,9 | 22,4 | | | | | Sensible cooling capacity | (2) | kW | 8,69 | 10,3 | 14,3 | 16,8 | | | | | Water flow | (2) | I/h | 2123 | 2255 | 3237 | 3853 | | | | | Water pressure drop | (2) | kPa | 3 | 1 | 4 | 4 | | | | | Sound power level | (3) | dB(A) | 61 | 62 | 56 | 58 | | | | | Power input | (4) | W | 400 | 400 | 335 | 335 | | | | - (1) Water temperature 85°C/75°C, air temperature 15°C max speed avaible in cooling mode (2) Water temperature 7°C/12°C, air temperature dry bulb 27°C, wet bulb 19°C (47% relative humidity) max speed avaible in - (a) Water temperature 7 C 12 C, an temperature dry build 27 C, wet build 19 C (47 % feature furnishing) max speed available in cooling mode (3) Sound power measured according to standards ISO 3741 max speed available in cooling mode (4) Referred to max speed available in cooling mode All data reported in the table above refer to maximum allowed ventilation speed in order to avoid the drag of the condensation drops generated in the heat exchanger. ## **Fan heaters AREO** ## RATED TECHNICAL DATA AREO H - HEATING MODE | AREO H | | | 13 | 13 | 23 | 23 | 33 | 33 | 33 | 43 | |---------------------|-----|---------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|--------------| | Power supply | | V-ph-Hz | 230 - 1 - 50 | 230 - 1 - 50 | 230 - 1 - 50 | 230 - 1 - 50 | 230 - 1 - 50 | 400 - 3 - 500 | 400 - 3 - 500 | 230 - 1 - 50 | | no. of poles | | | 4 | 6 | 4 | 6 | 4 | 4 | 6 | 4 | | Motor conncections | | | Mono | Mono | Mono | Mono | Mono | Delta | Star | Mono | | Rated air flow | | m³/h | 1083 | 855 | 2499 | 1758 | 3943 | 3800 | 2755 | 6080 | | Heating capacity | (1) | kW | 10,2 | 8,89 | 21,3 | 17,3 | 33,2 | 32,5 | 26,9 | 50,4 | | Water flow | (1) | l/h | 905 | 785 | 1882 | 1529 | 2935 | 2871 | 2376 | 4454 | | Water pressure drop | (1) | kPa | 13 | 10 | 19 | 13 | 12 | 11 | 8 | 25 | | Sound power level | (2) | dB(A) | 64 | 59 | 76 | 65 | 74 | 76 | 69 | 75 | | Power input | | W | 69 | 50 | 210 | 114 | 340 | 330 | 180 | 635 | ⁽¹⁾ Water temperature 85° C / 75° C, air temperature 15° C - 100% of the max speed (2) Sound power measured according to standards 150 3741 - 100% of the max speed | AREO H | | | 43 | 43 | 53 | 53 | 53 | 63 | 63 | 63 | |---------------------|-----|---------|---------------|---------------|--------------|---------------|---------------|--------------|---------------|---------------| | Power supply | | V-ph-Hz | 400 - 3 - 500 | 400 - 3 - 500 | 230 - 1 - 50 | 400 - 3 - 500 | 400 - 3 - 500 | 230 - 1 - 50 | 400 - 3 - 500 | 400 - 3 - 500 | | no. of poles | | | 4 | 6 | 6 | 4 | 6 | 6 | 6 | 8 | | Motor conncections | | | Delta | Star | Mono | Delta | Star | Mono | Delta | Star | | Rated air flow | | m³/h | 6223 | 5035 | 5890 | 7505 | 6128 | 8100 | 7885 | 6175 | | Heating capacity | (1) | kW | 51,1 | 45,2 | 56,2 | 64,8 | 57,5 | 99,7 | 80,5 | 69,2 | | Water flow | (1) | l/h | 4512 | 3991 | 4960 | 5720 | 5079 | 8802 | 7106 | 6112 | | Water pressure drop | (1) | kPa | 25 | 20 | 16 | 20 | 16 | 29 | 19 | 15 | | Sound power level | (2) | dB(A) | 77 | 70 | 69 | 76 | 72 | 70 | 71 | 66 | | Power input | | W | 690 | 465 | 375 | 732 | 775 | 560 | 575 | 380 | ⁽¹⁾ Water temperature 85° C / 75° C, air temperature 15° C - 100% of the max speed (2) Sound power measured according to standards $150\,3741$ - 100% of the max speed ## DIMENSIONAL DRAWINGS ## AREO H ### LEGEND | 1 | Water inlet connection female gas | |---|------------------------------------| | 2 | Water outlet connection female gas | | AREO H | A | В | E | G | 1 | 2 | <u> </u> | |--------|-----|-----|-----|-----|-------|-------|----------| | ANLUII | mm | mm | mm | mm | | | kg | | 13 | 460 | 330 | 300 | 380 | 1 1/4 | 1 1/4 | 20 | | 23 | 560 | 430 | 400 | 480 | 1 1/4 | 1 1/4 | 26 | | 33 | 660 | 530 | 500 | 580 | 1 1/4 | 1 1/4 | 35 | | 43 | 760 | 630 | 600 | 680 | 1 1/4 | 1 1/4 | 41 | | 53 | 860 | 730 | 700 | 780 | 1 1/4 | 1 1/4 | 52 | | 63 | 960 | 830 | 800 | 880 | 1 1/4 | 1 1/4 | 61 | | | | | | | | | | #### DIMENSIONAL DRAWINGS AREO P - AREO L | 1 | Water inlet connection male gas | | |---|----------------------------------|--| | 2 | Water outlet connection male gas | | | AREO P | A | В | D | E | G | 1 | 2 | Â | |--------------|-----|-----|-----|-----|-----|-------|-------|----------| | AKEU P | mm | mm | mm | mm | mm | | | kg | | 12 | 460 | 330 | 328 | 300 | 380 | 3/4 | 3/4 | 20-20-21 | | 13 - 14 | 460 | 330 | 329 | 300 | 380 | 3/4 | 3/4 | 20-20-21 | | 22 - 23 - 24 | 560 | 430 | 428 | 400 | 480 | 3/4 | 3/4 | 26-26-27 | | 32 - 33 - 34 | 660 | 530 | 528 | 500 | 580 | 1 | 1 | 34-35-37 | | 42 - 43 - 44 | 760 | 630 | 628 | 600 | 680 | 1 | 1 | 40-41-44 | | 53 - 54 | 860 | 730 | 728 | 700 | 780 | 1 1/4 | 1 1/4 | 52-55 | | 63 - 64 | 960 | 830 | 828 | 800 | 880 | 1 1/4 | 1 1/4 | 61-64 | | ADEOL | AREO L | В | B D | | G | 1 | 2 | ı 👛 💮 | | |---------|--------|-----|-----|-----|-----|-------|-------|-------|--| | AREO L | mm | mm | mm | mm | mm | | | kg | | | 32 - 33 | 660 | 530 | 528 | 500 | 580 | 1 | 1 | 34-35 | | | 42 - 43 | 760 | 630 | 628 | 600 | 680 | 1 | 1 | 40-41 | | | 53 | 860 | 730 | 728 | 700 | 780 | 11/4 | 1 1/4 | 52 | | | 63 | 960 | 830 | 828 | 800 | 880 | 1 1/4 | 1 1/4 | 61 | | #### DIMENSIONAL DRAWINGS #### AREO C | 1 | Water inlet connection male gas | |---|----------------------------------| | 2 | Water outlet connection male gas | | 5 | Condensate drainage ø 17 mm | | AREO C | A | В | D | E | G | 1 | 2 | Å | |--------------|-----|-----|-----|-----|-----|-------|-------|----------| | AREUC | mm | mm | mm | mm | mm | | | kg | | 12 - 13 - 14 | 460 | 330 | 328 | 300 | 380 | 3/4 | 3/4 | 20-20-21 | | 22 - 23 - 24 | 560 | 430 | 428 | 400 | 480 | 3/4 | 3/4 | 26-26-27 | | 32 - 33 - 34 | 660 | 530 | 528 | 500 | 580 | 1 | 1 | 34-35-37 | | 42 - 43 - 44 | 760 | 630 | 628 | 600 | 680 | 1 | 1 | 40-41-44 | | 63 - 64 | 960 | 830 | 828 | 800 | 880 | 1 1/4 | 1 1/4 | 61-64 | | | | | | | | | | | ## Air conditioning fan heaters with EC motor ## **AREO i 19 - 62 kW** installation Coolina #### Reliability and energy efficiency at the top of its category The new AREO i series combines the reliability and sturdiness of the on/off version with the innovation of Inverter technology. The AREO i series is equipped with brushless inverters (EC) integrated with the motor, which guarantees
accurate adjustment of the rotation speed and maximum adaptability to real-time thermal load. Innovative Inverter technology makes it possible to achieve an exceptional degree of aeraulic efficiency and a consequent reduction in seasonal power consumption of up to 50% in comparison to the traditional version with AC motor. The rounded shape of the cabinet gives the product an especially unique design. The AREO i range consists of 8 models to be wall mounted. AREO i is ideal for both heating and cooling due to an innovative system for collecting condensate and additional insulation inside the cabinet. The range includes 3 different construction sizes that are also available with 4-row heat exchangers to allow proper operation with hot water produced by the heat pump. #### **PLUS** - » Low sound levels - » Wide operating range (up to 65 °C intake air) - » Electric motor, class F, approved for continuous operation - » Fan and motor are integrated to provide considerably increased reliability | ACCE | SSORIES | |-------------|---| | Electronic | nicroprocess or control panels with display | | DIST | MY COMFORT controller spacer for wall mounting | | MCLE | Microprocessor control with display MY COMFORT LARGE | | MCSWE | Water sensor for MYCOMFORT and EVO controllers | | Power inte | rface and regulating louver controllers | | CSD | Recess mounted controller for opening and closing the SM motor-driven regulating louver | | Accessories | | | VA | Auxiliary tray for collecting condensate | | Fixation te | mplates | | DFC | Template for column installation | | DF0 | Adjustable template for wall/column installation | | DFP | Template for wall installation | |--------------|---| | Protective g | rill for gyms (ball shield) | | R | Protective net for gyms | | Diffusors | | | DO | Two-row adjustable fin diffuser | | External air | intake | | PAE | External air intake | | PAEM | Manual mixing louver | | PAEMM | Motor driven mixer louver, 24 V power supply with spring return | | External air | intake rain protection grille | | GR | Air intake grille with subframe | | | | #### MAIN COMPONENTS #### Fan drive assembly The electric fan and EC motor are a single integrated unit optimized to achieve maximum aeraulic efficiency. In fact, conformity to ERP is guaranteed, even for the versions with single-phase power supply. #### **Electric motor** Tropicalized motor directly coupled to an external rotor, standard, with the following features: - equipped with internal thermal protection - · windings in class F - protection rating IP54 #### **Axial fan** With blades with an optimized aerodynamic profile, statically balanced, inserted in a housing that enhances aeraulic performance and minimizes noise. ### Microprocessor controller (accessory) The advanced microprocessor control unit adjusts the fan speed of the brushless motor between 0 and 100%, so that in all partial load conditions the indoor unit will operate at a reduced speed with considerably reduced noise emissions and power consumption. #### **Cabinet** Pre-painted steel sheet cabinet complete with ABS corner trims, adjustable aluminium louvers (spring-operated) placed on the air outlet which enable an optimal distribution of air within the room to be heated. #### **Heat exchanger** High conductivity heat exchanger made with copper piping and aluminium fins assuring higher heat exchange than standard iron piping exchangers. #### DIMENSIONAL DRAWINGS AREO i | L | EG | E | N | D | |---|----|---|---|---| | 1 | Water inlet connection, male gas | |---|-----------------------------------| | 2 | Water outlet connection, male gas | | 3 | Condensate discharge Ø 17 mm | | AREO i | A | В | D | E | G | 1 | 2 | Å | |-------------------------------|-----|-----|-----|-----|-----|-------|-------|----------| | ANEUT | mm | mm | mm | mm | mm | | | kg | | 33MDF - 34MDF | 660 | 530 | 528 | 500 | 580 | 1 | 1 | 33-34-36 | | 43MDF - 43TDC | 760 | 630 | 628 | 600 | 680 | 1 | 1 | 39-41-42 | | 63MDF - 63TDF - 63MDC - 63TDC | 960 | 830 | 828 | 800 | 880 | 1 1/4 | 1 1/4 | 58-61-63 | ### Fan heaters AREO i #### RATED TECHNICAL DATA - HEATING MODE | AREO i | | | 33MDF | 34MDF | 43MDF | 43TDC | 63MDC | 63MDF | 63TDC | 63TDF | |---------------------------|-----|---------|----------|----------|----------|----------|----------|----------|----------|----------| | Power supply | | V-ph-Hz | 230-1-50 | 230-1-50 | 230-1-50 | 400-3-50 | 230-1-50 | 230-1-50 | 400-3-50 | 400-3-50 | | Air flow rate max heating | | m³/h | 3400 | 3255 | 5575 | 7606 | 9006 | 7449 | 10734 | 8282 | | Heating capacity | (1) | kW | 19,0 | 22,3 | 31,0 | 36,4 | 59,9 | 56,2 | 68,6 | 62,2 | | Water flow | (1) | I/h | 1664 | 1954 | 2719 | 3183 | 5249 | 4921 | 6005 | 5448 | | Water pressure drop | (1) | kPa | 5 | 9 | 12 | 16 | 13 | 11 | 16 | 13 | | Sound power level | (2) | dB(A) | 77 | 79 | 76 | 80 | 78 | 75 | 84 | 83 | | Power input | (3) | W | 189 | 193 | 388 | 918 | 693 | 414 | 1001 | 655 | Water temperature 65°C/55°C, air temperature 15°C - 100% of the max speed Sound power measured according to standards ISO 3741 - 100% of the max speed Referred to maximum speed #### RATED TECHNICAL DATA - COOLING MODE | AREO i | | | 33MDF | 34MDF | 43MDF | 43TDC | 63MDC | 63MDF | 63TDC | 63TDF | |---------------------------|-----|---------|----------|----------|----------|----------|----------|----------|----------|----------| | Power supply | | V-ph-Hz | 230-1-50 | 230-1-50 | 230-1-50 | 400-3-50 | 230-1-50 | 230-1-50 | 400-3-50 | 400-3-50 | | Air flow rate max cooling | | m³/h | 2601 | 2414 | 3848 | 4164 | 5746 | 4107 | 6173 | 4471 | | Heating capacity | (1) | kW | 16,3 | 18,9 | 25,0 | 25,8 | 45,6 | 38,5 | 49,1 | 42,0 | | Water flow | (1) | l/h | 1426 | 1653 | 2192 | 2261 | 3992 | 3367 | 4295 | 3675 | | Water pressure drop | (1) | kPa | 4 | 7 | 8 | 9 | 8 | 6 | 9 | 7 | | Total cooling capacity | (2) | kW | 5,83 | 9,65 | 12,2 | 13,4 | 21,1 | 19,4 | 25,9 | 23,9 | | Sensible cooling capacity | (2) | kW | 4,63 | 6,66 | 8,32 | 9,14 | 13,7 | 12,7 | 17,1 | 15,7 | | Water flow | (2) | l/h | 1016 | 1672 | 2120 | 2332 | 3661 | 3367 | 4509 | 4124 | | Water pressure drop | (2) | kPa | 3 | 9 | 8 | 9 | 9 | 6 | 9 | 11 | | Sound power level | (3) | dB(A) | 73 | 72 | 68 | 70 | 71 | 68 | 78 | 72 | | Power input | (4) | W | 86 | 92 | 139 | 177 | 219 | 103 | 363 | 131 | (1) Water temperature 65°C / 55°C, air temperature 15°C - max speed avaible in cooling mode (2) Water temperature 7°C / 12°C, air temperature dry bulb 28°C, wet bulb 19°C (53% relative humidity) - max speed avaible in cooling mode (3) Sound power measured according to standards ISO 3741 - max speed available in cooling mode (4) Referred to max speed available in cooling mode #### Air destratifiers ## DST 1700 - 9100 m³/h installation #### The solution for eliminating hot air stratification in industrial environments In industrial environments characterized by high ceilings and heating with hot air systems, the need to maintain a comfortable temperature at the floor level for the personnel results in the inconvenience of concentrating high-temperature air in the upper part of the area. Therefore, the heat remains trapped and unused near the roof and it is destined to be lost outdoors, thus increasing the building's heat loss. The DST series air destratifiers eliminate this problem, generating a descending vertical air flow that is able to reduce the difference in temperature of the air between the floor and the ceiling up to a maximum of approximately 3 °C. During the summer months the DST air destratifiers can be used to achieve effective ventilation. They are equipped with a fan drive unit consisting of axial fans and asynchronous, single-phase, and three-phase electric motors depending on the size, with external rotor, which guarantees compatibility with the most recent regulations on limiting energy consumption. The safety thermostat and the magnetothermic motor protection device with manual reset, installed in the unit as standard equipment, together with the convenient mounting brackets and baffles that can be adjusted to direct the air flow, make installation particularly easy without the use of further accessories. #### **PLUS** - » Simple installation - » Overload cut-out and safety thermostat are standard - » Adjustable louvers - » HyBlade® axial fans #### MAIN COMPONENTS #### Fan drive assembly The axial fan, with Hyblade® type airfoil blades made of aluminum and coated with plastic material, possesses the unique characteristics of both materials: sturdiness and quietness are combined with a highly efficient asynchronous electric motor with external rotor. #### Fan stop thermostat It is installed on the unit and allows the temperature to be set at which destratifier operation is activated. #### Structure Pre-painted sheet steel structural work equipped with ABS and adjustable aluminum baffles. #### RATED TECHNICAL DATA | DST | | | 14 | 26 | 36 | 46 | 56 | 66 | |-----------------------------|-----|---------|--------------|--------------|-------------|--------------|--------------|--------------| | Fan speed | | rpm | 1400 | 900 | 900 | 900 | 900 | 750 | | Rated air flow | | m³/h | 1710 | 3083 | 4199 | 7220 | 8142 | 9139 | | Minimum installation height | | m | 3,00 | 3,50 | 4,50 | 5,00 | 7,00 | 6,50 | | Maximum installation height | | m | 5,00 | 5,50 | 7,00 | 7,50 | 9,00 | 10,0 | | Power supply | | V-ph-Hz | 230 - 1 - 50 | 230 - 1 - 50 | 400 - 3 -50 | 400 - 3 - 50 | 400 - 3 - 50 | 400 - 3 - 50 | | Power input | | W | 62 | 110 | 160 | 390 | 418 | 320 | | Absorbed current | | Α | 0,30 | 0,50 | 0,30 | 0,70 | 0,70 | 0,60 | | Sound power level | (1) | dB(A) | 65 | 68 | 72 | 76 | 78 | 70 | ⁽¹⁾ Sound power measured according to standards ISO 3741 #### DIMENSIONAL DRAWINGS # CO - CONTROLLERS AND SOFTWARE FOR HYDRONIC INDOOR UNITS Introduction p.154
EVO-2-TOUCH p.158 **EVO** p.160 **EVO DISP** p.161 **GALLETTI APP** p.162 **MYCOMFORT** p.164 TED p.166 **EVO LINK** p.167 Air-conditioning control is now quick and easy: effective room comfort is efficiently, simply, and intuitively accessible with Galletti control panels, from the simplest electromechanical control for setting the fan speed to microprocessor controls for complete temperature and humidity control. Both ON/OFF and modulating 2- and 3-way valves are managed according to the temperature and humidity values measured. # Controls that can be integrated into any type of system The wide range of Galletti controllers offers a multitude of installation options. No fewer than 7 controls designed for on-board installation guarantee simple and elegant solutions. Specific installation kits allow mounting in the ESTRO, FLAT hydronic indoor units. This gives users control of the temperature at their fingertips and a solution that can be integrated in any type of environment. There is now an even wider range of wall-mounted controllers: 9 controls with the option to manage, from a single point, more than one indoor unit in the same room. In addition to these, an infrared remote control is also available for high wall-mounted indoor units and cassette fan coil units. #### Controls of every level for any need Galletti's offering is suitable for every need of cost-effectiveness and functionality. With its 9 electromechanical controls and its 5 microprocessor controls, Galletti is a market leader due to the diversity of its range of products. The devices offered in its catalogue are capable of interacting with multiple-speed indoor units or with modulating ventilation managing various different dynamics of thermostatation and any serial communication. # Serial Communication: different possibilities for different needs Galletti offer of RS485 serial port microprocessor controls, allows a suitable single terminal management, literally opening the doors to every plant adjustment need. The circulation of information on a bus-type network via Modbus communication protocol, standard in the HVAC field, is completed and combined with Power Line Communication (PLC), enabling a customised and easier interaction between user and plant. #### Power Line Communication (PLC) Network #### » Easy installation - » Single interface to control multiple units - » Electrical wires reduction - » Slave units repeat exactly Master unit instructions - » Suitable solution for terminal units submitted to the same thermal charge - » Available with EVO controller #### Modbus Network #### » Suitable solution for terminal units submitted to different charges - » Each unit is equipped with its own sensors - » Master unit sets the main parameters - » Multiple degrees of freedom settable for Slave units - » Available with MYCOMFORT or EVO controllers #### Mixed Network #### » Ideal solution for hotels or places with multiple zones to be conditioned - » Key areas controlled via Modbus protocol and replica of the same instructions via Power Line Communication (PLC) - » Master unit can be a simple controller or a more complex supervision system - » Monitoring with decreasing degree of autonomy - Contemporary use of Modbus Network and Power Line Commnication (PLC) with both advantages - » Available with EVO controller #### Controllers and software for indoor hydronic units #### Overview page of controls for hydronic indoor units The following table can be used to quickly identify the most suitable control panel according to the functionality required. #### **ELECTROMECHANICAL CONTROLLERS MICROPROCESSOR CONTROLLERS** TED4T TED10 00 00 On-board Installation Wall 2 pipes System 4 pipes Air thermostat 3 speeds $4\,speeds$ Automatic speeds Variable speed Dehumidification / RH reading Water sensor External sensors Remote air sensor Remote RH sensor Water operating thermostat External devices management ON/OFF valve management Modulating valve management Control of heating element Digital outputs Summer/Winter local Summer/Winter water Ancillary functions Summer/Winter air (4 pipes) Economy Digital inputs Modbus communication ^{*} options that are not mutually compatible #### Overview page of controls for hydronic indoor units The following table can be used to quickly identify the most suitable control panel according to the functionality required. #### MICROPROCESSOR CONTROLLERS WITH DISPLAY | MYCOMFORT
BASE | MYCOMFORT
MEDIUM | MYCOMFORT
LARGE | EV02T0UCH | EVO | LED503 | | | |--|---------------------|--------------------|-------------|-------------|------------|--------------------------------|-----------------------------| | 855-2
*********************************** | some 1 | 1 diag | 3000 | | 189 | | | | • | • | • | ✓ ** | ✓ ** | • | On-board | Instal | | ~ | ~ | • | ~ | • | ~ | Wall | Installation | | ~ | ~ | • | ~ | • | • | 2 pipes | System | | • | ~ | ✓ * | ~ | • | * * | 4 pipes | tem | | • | • | • | ~ | • | • | Air thermostat | | | • | ~ | • | ~ | • | • | 3 speeds | | | • | ~ | • | ~ | * | * * | 4 speeds | Adjus | | • | ~ | • | ~ | • | • | Automatic speeds | Adjustment | | - | _ | ~ * | ~ | * | _ | Variable speed | | | _ | ~ | ~ | ~ | • | _ | Dehumidification / RH reading | | | ~ | ~ | * | ~ | * | ~ | Water sensor | | | ~ | ~ | ~ | ~ | * | ~ | Remote air sensor | Externa | | - | ~ | • | ~ | • | _ | Remote RH sensor | External sensors | | - | _ | _ | - | - | _ | Water operating thermostat | | | • | ~ | • | ~ | • | • | ON/OFF valve management | Exterr | | - | _ | * * | ~ | • | _ | Modulating valve management | ıal device | | • | ~ | • | ~ | • | * * | Control of heating element | External devices management | | _ | _ | • | ~ | • | _ | Digital outputs | ement | | ~ | ~ | ~ | ~ | • | ~ | Summer/Winter
local | | | ~ | ~ | ~ | ~ | • | ~ | Summer/Winter
water | | | ~ | ~ | ~ | ~ | ~ | ~ | Summer/Winter
air (4 pipes) | Ancil | | ~ | ~ | ~ | ~ | • | _ | Economy | Ancillary functions | | ~ | ~ | • | ~ | • | ~ | Digital inputs | tions | | _ | ~ | ~ | ~ | • | _ | Modbus communication | | | • | ~ | • | ~ | • | _ | JONIX management | | ✓ * op ✓ ** Al options that are not mutually compatible ART-U #### Controllers and software for indoor hydronic units EVO ## Touch screen display interface to combined with EVOBOARD ## **EVO-2-TOUCH** #### **PLUS** - » 2.8" capacitive touch screen display - » Integrated temperature and humidity probe - » Low-voltage power supply drawn from the power component - » Wall mounted or ART-U on-board installation - » Designed for the main electrical connection boxes - » User-friendly - » Aluminium foil and polyethylene frame with various chrome plating options #### EATURES #### Intelligent interface The various screens are designed to make human-machine communication intuitive. Each page contains a few essential items of information that allow the consultation of the unit's main operating parameters and enable the initial control configuration according to system requirements. #### Smart touch Touch screen technology is another element whose goal is to simplify the user experience. The tap and swipe functions make the control experience similar to that of your smartphone. #### INSTALLATION #### **Installation procedures** The touch screen interface can be installed in the ART-U series in combination with the EVO BOARD circuit board, integrating all the advanced functions of EVO with a strongly design-oriented product. The different colour combinations of the frame, combined with the different versions of the cover panel of the ART-U series, allow considerable freedom of customisation. If envisaged to be combined with other series of fan coil units, the preparation for the main standard electrical boxes allows easy mounting on the wall. In this case the clips positioned at both ends of the containment box allow the correct reading of the room temperature by the sensor integrated in the control electronics #### **COLOUR OPTIONS** #### **Customisable frame** The external frame of the interface is available in four different chrome plating options and is made with double aluminium foil and a polyethylene core. The available colours are white, black, grey, and red, and allow the ideal combination with the versions of the ART-U series. In the case of wall mounting, the various solutions represent a good range of choice for determining the best match with the style of the structure to be air-conditioned. #### **FUNCTIONS** #### "Economy" A typical need in hotel rooms and in other rooms with variable occupancy is the management of air conditioning with reduced operation when the user is not present. This solution, which is often accomplished by means of occupancy sensors or magnetic readers, guarantees considerable energy savings, but requires the possibility to force the fan coil unit to operate in Economy mode in a simple and effective manner. This is all possible with EVO, which has 3 pre-configured digital inputs for ON/OFF, Economy mode, and remote summer/winter switchover. #### **Lock function** On all the interfaces that can be combined with the EVO BOARD circuit board, it is possible to force the locking of the control functions in order to avoid unwanted changes to the fan coil unit's operating and configuration parameters. This function is activated with a keyboard shortcut or by entering passwords depending on the interface chosen. #### **Configurable digital output** EVO is equipped with a fully configurable digital output that allows the control to provide important information to external devices, such as the cooling and/or heating demand, the operating mode, and the possible presence of an alarm. #### Activation of external dehumidifier/humidifier This control implements the humidity control function in relation to a settable setpoint. By connecting the appropriate sensor to the
control it is possible to not only vary the fan coil unit's adjustment dynamics, but also manage the calls to external devices such as humidifiers and dehumidifiers. #### Controllers and software for indoor hydronic units EVO #### Electronic microprocessor control #### **EVO** Management by zones Touch screer #### Intuitive and user-friendly multipurpose regulator EVO encompasses the best of Galletti adjustment with regard to hydronic indoor units. The EVO software, which was developed entirely by Galletti's Technical Department, consists of two distinct parts in two microprocessors. The first of these, resident on the power board, manages the monitoring of the parameters and the adjustment logics. The second part of the software, which is loaded on the user interface microprocessor, guarantees true communication, by means of which the installer and the user are guided in the configuration and use of the controller. If on-board installation of the power board is requested, which is an option that is available for the majority of Galletti hydronic indoor units, during the wiring phase you just need to connect the user interface using a two-core shielded cable. This extraordinary simplicity cuts installation time and costs in half. The EVO controller has been designed to govern the operation of Galletti indoor units with single-phase multispeed asynchronous motor or modulating speed EC motors. Specifically, its advanced technology makes it possible to establish control networks that are suited to meet any need, for automatic and intelligent management of the system's indoor units. #### **PLUS** - » Considerable savings in the installation phase - » User-friendly interface - » RS485 and OC serial communication - » Advanced de-humidifying function - » Simultaneous control of 3 modulating devices - » Advanced control of time schedules - » LCD display or touch screen #### Multi-interface control EVO is characterized by the possibility of combining the power module with different types of interfaces, adopting each time the best solution for different installation needs. If an interface is not required, the unit can be directly connected to one's smartphone using the Galletti app (after pre-configuring the circuit board). #### **Split solution** The separation between power elements and graphic interface is a very practical solution from the point of view of installation, with the advantage of supplying low voltage to the interface in contact with the user and using a single cable for both power supply and information exchange between the two devices. This considerably reduces the length and cost of the cables to be laid, thus avoiding any additional cost for the end user. #### **ACCESSORIES** Elecromechanical control panels IPM Circuit board for connection of UTN 30-30A-40-40A to control panels. Electronic microprocessor control panels with display | MCSUE | Humidity sensor for MY COMFORT (medium e large), EVO | |-------|--| | MCSWE | Water sensor for MYCOMFORT and EVO controllers | ### User interface with LCD display ### **EVO DISP** to combined with EVOBOARD #### PLUS LCD display with integrated temperature probe Low-voltage power supply drawn from the power component Wall mounted or ART-I Lon-board installation Wall mounted or ART-U on-board installation Designed for a 503 electrical enclosure Customisable stand-by mode Keypad lock function #### **LCD** display The control panel connects directly to the circuit board installed on the fan coil unit from which the low-voltage power supply is drawn. The interface is designed to be installed on standard electrical boxes and is designed to house a probe for reading relative humidity. Its real-time clock (RTC) allows the fan coil unit to be managed by setting time bands. #### Automatic control of time slots The user interface makes it possible to set the ON/OFF status of the control and the desired setpoint, on an hourly basis, for the different days of the week. If the above-mentioned operating parameters are set on a master unit, they can be replicated on all the connected slaves. ### Modulating devices control EVO is capable of simultaneously controlling up to two modulating valves and one BLDC fan, making it possible to vary the air flow rate and the water flow rate in the heat exchanger, adapting to the thermal load. #### **Humidity control** EVO offers the possibility of automatically activating a dehumidification process depending on the relative humidity and a settable setpoint. This function requires a humidity sensor that is available as an accessory. #### Serial communication The controller has serial ports for RS485 communication and power-line communication that allow the development of control networks that are adequate for every need. ## Indoor unit control application for smartphones #### **GALLETTI APP** **PLUS** - » Wi-Fi or Bluetooth communication - » Information always accessible in the cloud - » Remote access - » IOS- and Android-compatible application - » Can be used with all indoor units governed by EVO #### **FUNCTIONS AND FEATURES** #### Navel It is the device used to enable Wi-Fi or Bluetooth communication between EVO BOARD and the smartphone on which the Galletti application is present. It is to be placed on the side of the fan coil unit and draws power directly from EVO. #### Communication Two possible communication alternatives are available: Wi-Fi or Bluetooth. In the first case information is sent to the cloud and any device using the application can consult or change the settings wherever an internet connection is available. The second mode is the stand-alone mode; it is capable of transforming a smartphone into a remote control for the fan coil unit. #### **Universal remote control** All the advanced EVO control functions are present in the application, which is therefore able to activate/ deactivate dehumidification cycles, activate the minimum temperature function, and activate or deactivate the time bands that define the switching on and off of the devices. #### **Diagnostic information** The application makes available information about the status of the fan coil unit and some accessories that are currently connected. Among other things, it is possible to evaluate the opening/closing status of the valve, the water supply temperature, and the possible presence of an alarm in the air temperature probe reading. #### Compatibility The possibility of combining the Navel accessory with the EVOBOARD circuit board makes the application suitable for controlling all the indoor units in the catalogue that do not already have the possibility of infrared remote control. Within the application it is possible to create a customised list of indoor units that can be quickly accessed. | ACCESSORIES | | |---|--| | EVO-2-TOUCH 2.8" touch screen user interface for EVO control | EVODISP User interface with display for EVO controller | | EVOBOARD Circuit board for EVO control | EYNAVEL Device for Wi-Fi or Bluetooth communication between EVOBOARD and smartphone | #### **EVO-LUTION** #### GALLETTI APP #### EVO BOARD #### EVO DISP #### EVO-2-TOUCH #### Controllers and software for indoor hydronic units MYCOMFORT ## Electronic microprocessor controller with LCD display ### **MYCOMFORT** #### Three different proposals for a customized level of comfort Climate control becomes fast and simple: interior comfort conditions can be controlled thanks to the new MYCOMFORT control panels, the connection node of Galletti integrated systems. The microprocessor control panel allows you to set the operating mode of the indoor hydronic units in such a way as to achieve conditions of interior comfort and complete control over the air conditioning system. The controller features a large-sized liquid crystal display with incorporated keypad for setting and reading environmental parameters and the operating parameters of the indoor unit connected to it. There is a vast choice of accessories available, which allow either wall mounting or installation on board the indoor unit. Management of external #### PLUS - » Three versions depending on the customer's requirements - » Large display - » User-friendly interface - » Wall mounted or on-board installation - » Easy connection and startup #### **AVAILABLE VERSIONS** #### speeds) unit and regulating valves. #### **MEDIUM** #### Temperature-based control of fan coil (4 fan Control of fan coil unit (4 fan speeds) and Control of fan coil unit (4 fan speeds) and reqvalves based on temperature and humidity, ulating valves based on temperature, humidconnection to supervision systems, setting ity, weekly timer, connection to supervision up of small networks in slave mode. systems, setting up of small networks in master mode, backlit display, control of modulating devices (valves, EC motors) #### MAIN COMPONENTS AND FEATURES #### Shell The outer shell is made of ABS that has been UV treated to retain the original colour over time. Its pleasant design makes it suitable for high-grade installations in sophisticated environments. #### **Display** 3" are available to the user to clearly view all the data of interest for efficient adjustment. The use of intuitive pictograms to represent all the functions makes it highly user friendly. #### **Terminal board** MYCOMFORT features quick-connect terminals which enable hassle-free wiring. Programming of the functions and address is simplified as it can be done directly from the keypad and display. #### **Control and savings** Automatic control of the unit's cooling and heating functions according to air and water temperatures. #### **Real comfort** MYCOMFORT can control and maintain comfort in terms of both temperature and humidity thanks to the presence of a sensor which
measures ambient humidity and enables dehumidification cycles to be carried out by acting on valves, ventilation and the water set-point. #### Management of accessories and external devices This controller allows the management of both ON/OFF and modulating 2- and 3-way valves, and in addition it is possible to manage external devices such as chillers, boilers, and zone valves. It is performed by means of no-voltage ON/OFF contacts, depending on the environmental parameters. #### Supervision This controller can be integrated with a monitoring system, by means of the RS485 bus connection, from which it is possible to display all the functions and access to the MYCOMFORT programming menu. #### MYCOMFORT FEATURE | Base | Medium | Large | |------|--------|---------------------------------------| | • | • | • | | • | • | • | | • | • | • | | | | • | | • | • | • | | • | • | • | | | • | • | | | • | • | | | | • | | | | • | | | | • | | | | • | | | • | · · · · · · · · · · · · · · · · · · · | | ACCESSORIES | | | | | | | |--------------|--|--------|--|--|--|--| | Electronic n | nicroprocessor control panels with display | KBFLAE | MY COMFORT on-board installation KIT for FLAT | | | | | DIST | MY COMFORT controller spacer for wall mounting | MCSUE | Humidity sensor for MY COMFORT (medium e large), EVO | | | | | KB2X1E | MY COMFORT on-board installation KIT for 2X1 | MCSWE | Water sensor for MYCOMFORT and EVO controllers | | | | | KRESTE | MY COMFORT on-hoard installation kit for FSTRO | | | | | | #### Controllers and software for indoor hydronic units TED ### Simplified electronic controller #### **TED** 2 pipes ## PLUS - » Three versions depending on plant and terminal units - » Easy application - » Wall mounted or on-board installation - » Units supplied with EC electric motor supported (only 0-10 V version) #### A series of three easy and efficient controllers The three versions of the new electronic device TED, are Galletti answer to the demand of a simple and flexible controller suitable to the different plant needs. The assignment of the operating conditions is intuitive and easy-applicable, and the supplied accessories allow the installation on board in addition to the classical on The controller is moreover equipped in all versions with dedicated contacts for both air and water probes. In this latter case it is therefore possible to consent ventilation only if water temperature is adequate to the normal operating condition. #### **AVAIL ABLE VERSIONS** - It supports terminal units equipped with It supports terminal units equipped with It supports terminal units equipped with asynchronous electric motor in 2 pipes - ON/OFF valve supported - asynchronous electric motor in 4 pipes - Two ON/OFF valves supported - Water consent on the basis of temperature Seasonal manual or automatic switch (on Manual or automatic speed adjustment the basis of air temperature) - EC electric motor thanks to its internal 0-10 V signal generator - Suitable for both 2 or 4 pipes plants - Water consent on the basis of temperature Water consent on the basis of temperature | ACCE: | SSORIES | | | |--------------|--|---------|---| | Electronic m | icroprocessor control panels | KB L SX | On-board ESTRO FL/FU/FB installation kit on the left side suitable for TED controller | | KB A | On-board ESTRO FA installation kit suitable for TED controller | TED SWA | Water temperature sensor for TED controls | | KB F | On-board FLAT/FLAT S installation kit suitable for TED controller | KB-ART | On-board ART-U installation kit suitable for TED controller | | KB L DX | On-board ESTRO FL/FU/FB installation kit on the right side suitable for TED controller | | | #### Controllers and software for indoor hydronic units EVO LINK Monitoring system with 5" touch screen for the air-conditioning system ### **EVO LINK** #### EVO LINK, supervision made simple. To provide a monitoring package that is both intuitive and powerful, EVO LINK was developed Galletti monitoring in a convenient all-in-one format. EVO LINKis an elegant but unobtrusive 5" wall-mounted tablet that contains everything necessary for monitoring a small system. With EVO LINK, a heat pump and up to 30 indoor units can be controlled with EVO controls, using cool, intuitive graphics. With EVO LINK, monitoring has never been easier: setting time slots, scheduled switching on or off, or changing your units' setpoints will be quick and convenient. #### **PLUS** - » Advanced logic zone management - » Monitoring of heat pumps and multi-purpose units - » Time schedules - » Indoor unit auto-scanning procedure - » Extreme simplicity of installation and of use The simple and intuitive dashboard allows you to control all the devices in your system with just one click! Thanks to the dedicated screen, managing chillers and heat pumps has never been this easy! | ACCESS | SORIES | | | |-----------------|--|-------|--| | Electronic micr | oprocessor control panels with display | MCSWE | Water sensor for MYCOMFORT and EVO controllers | | EVO-2-TOUCH | 2.8" touch screen user interface for EVO control | | | | EVOBOARD | Circuit board for EVO control | | | | EVODISP | User interface with display for EVO controller | | | ## AW - AIR CHILLERS AND HEAT PUMPS | Introduction | p.170 | | | |--------------|-------|---------|-------| | MPE | p.172 | EvitecH | p.220 | | MLI | p.184 | V-IPER | p.228 | | DLI | p.190 | LCX | p.240 | | MLP | p.196 | VLS | p.256 | | PLP | p.202 | GLE | p.276 | | PLI | p.208 | MTE | p.284 | | PLE | p.214 | LRE | p.294 | # Range of capacities between 4 and 1200 kW to meet engineering and installation requirements. 10 different series of units, cooling only or heat pump, from which professionals can make the proper choice depending on their design and installation requirements. The feature that all Galletti units have in common is the complete configurability of every model. The hydronic and aeraulic "plug & play" feature that allows immediate system application, the partial heat recovery from overheating for the production of hot water at the same time as operation in cooling mode, and the sophisticated controls that allow interconnection with monitoring systems using the most common protocols, are a few of the possibilities for customizing the air/water heat pumps and chillers. With Galletti, special becomes standard. #### All-in-one solutions. All Galletti air heat pumps and chillers are completely configurable on the hydronic side. Inside every unit, from 4 to 1200 kW, depending on the series, it is possible to install hydronic kits without modifying their dimensions, with the option of choosing the water circulation pump: - » single pump, standard head or uprated (high head). - » dual pump solution (OR): standard or uprated pump, operating singly. The pumps operate in turns on a time/fault basis. In the case, the microprocessor controls the pumps in such a way as to equally divide the hours of operation, changing over the pumps in the event of a fault. - a dual pump solution (AND): standard or uprated pump, operating simultaneously. Connected in parallel, they deliver water at the nominal flow rate when operating simultaneously. #### AEROTHERMAL ENERGY #### Air: a source that is always available Galletti air/water units are characterized by a large operating range that allows them to adapt to use under any conditions. Cooling operation at full load with air temperatures up to 51 $^{\circ}$ C, which increases as a result of careful management of the step levels. During the winter period, production of water up to 65 $^{\circ}$ C and operation with external temperatures as low as -20 $^{\circ}$ C. #### Finned block heat exchangers They are generously sized and can use hose with a diameter of 8 mm, which reduces air side pressure drops, thereby considerably improving the unit's noise levels. The special engineering of the heat exchangers allows defrost cycles to be carried out at maximum speed in the models with heat pump operation, which brings clear benefits in terms of the integrated efficiency of the whole cycle. On request hydrophilic heat exchangers can be installed that particalize the water droplets and reduce obstruction by ice of the spaces between the fins, preventing the formation of frost at low temperatures. The finned block condensers can be fitted with a protective outer grille. #### Air heat exchanger – micro-channel refrigerant coil Micro-channel heat exchanger made of aluminium-manganese alloy fins, heads and channels made of long life alloy and copper coated user connections. Micro-channel technology together with an accurate thermodynamic project, ensure a reduced refrigerant charge up to 30 or 40% than the corresponding chillers equipped with usual condensing coils. This result appears to be extraordinary if related to the coherent choose of producing low TEWI units made by Galletti in order to reduce environmental impact in the HVAC sector. #### Free-cooling The Free-cooling units permit high energy saving when outdoor temperature is lower than the circulating fluid temperature (process industry, close control applications, information technology industry in general, congress halls, etc.). Free cooling exchanger performance depends on the difference between outdoor air temperature and circulating water temperature. #### Air chillers and heat pumps MPE ### Outdoor packaged unit ## **MPE 4 - 76 kW** compressor Refrigerant R-410A Cooling only Heating/ Cooling Packaged execution compressor #### **PLUS** - » Completely configurable range - » Dual-compressor version that guarantees high efficiency at partial loads - » Production of
chilled water up to an air temperature of 47 °C - » Built-in hydronic unit - » Available ducted version on request **>>** - #### Efficiency under all operating conditions MPE water chillers and heat pumps are designed for outdoor installation in both residential and industrial applications. The range uses R410A refrigerant, which assures high levels of performance with relatively low energy consumption and features 10 models in the chiller version and 29 models in the heat pump version, with cooling capacities ranging from 20 to 71 kW and heating capacities from 5 to 85 kW. The finned block heat exchangers have been optimised for R410A and use 8 mm copper pipes, which permit a better heat exchange and quiet operation of the fans. Their generous sizing guarantees the production of chilled water even with outdoor air temperatures as high as 51°C. In the MPET models, with a double compressor on the same cooling circuit, the working temperature range is extended further and efficiency at partial loads increases. In demanding working conditions the microprocessor controller activates the capacity control mode, doubling the condensing surface available to the single compressor. The self-adaptive logic allows the setpoint to be adjusted automatically according to the outdoor temperature in order to reduce consumption and broaden the working temperature range. The unit can also function in systems with a low water content, even without the use of a storage reservoir, thanks to the automatic adjustment which limits the number of compressor starts and thus extends the life of the compressors themselves. The exclusive Smart Defrost System (optional feature available with the advanced controller) can correctly identify an impairment of performance in the outdoor exchanger due to the formation of ice and minimise the process time in relation to normal operation of the unit. MPE heat pumps and water chillers are designed for heating or cooling the water to be used in air-conditioning systems for residential, commercial or industrial use. #### MAIN COMPONENTS #### Structure Painted galvanised sheet steel structure (RAL9002) for an effective resistance to corrosive agents. Fastening devices are made of non-oxidizable carbon steel that has undergone surface-passivating treatments. #### Customised hydraulic kit The structure can accommodate hydronic kits with pump, expansion tank, and buffer tank. High head pump made entirely of stainless steel, already configured for use with mixtures of water and ethylene glycol up to 25% and provided with internal thermal protection. #### Fan drive assembly Electric fan with external rotor motor directly keyed to the axial fan, with internal thermal protection on the windings. #### Finned block heat exchanger Made of 8mm diameter copper pipes and aluminium fins. The heat exchangers' particular design makes it possible to speed up to the maximum the defrost phases in the versions with heat pump with obvious benefits to seasonal efficiency while operating in heating mode. #### **Electronic microprocessor control** The electronic controller enables the complete control of the MPE unit. It can be easily accessed through a polycarbonate flap with IP65 protection rating. It implements the compressor regulation logic and allows the complete management of the unit's other parts, the reversal of the cooling cycle, and the alarms. #### CONFIGURATOR The models are completely configurable by selecting the version and Version 1 2 3 4 5 6 7 8 9 10 11 12 13 the options. To the right is shown an example of configuration. 0 0 Α Ε To verify the compatibility of the options, use the selection software or the price list. #### AVAILABLE VERSIONS Only cooling versions MPE..COAC MPE..C2AC Power supply 400V-3N-50Hz Power supply 400V-3N-50H + circuit breaker #### Reversible heat pump versions Power supply 400V-3N-50Hz Power supply 230V-1N-50H Power supply 400V-3N-50H + circuit breaker MPF. HOAA MPE..HMAA MPE..H2AA MPE..H4AA Power supply 230V-1N-50H + circuit breaker #### CONFIGURATION OPTIONS - **Expansion valve** - Mechanical Electronic - 2 Water pump and accessories - 0 Absent - LP pump + expansion vessel - LP run and standby double pump + expansion vessel (advanced controller required) 2 - 3 Water buffer tank - Absent - Selected - **Partial heat recovery** - Absent - Desuperheater with pump activation contact - Air flow modulation - Condensation control by phase-cut fans - Condensation control performed by EC fans - Antifreezing kit 0 - Evaporator (tandem unit advanced controller required) - Evaporator and pump (tandem unit advanced controller required) Evaporator, water pump and water buffer tank (tandem unit advanced controller required) - Acoustic insulation and attenuation - Absent - Compressor compartment acoustic insulation - Compressor sound blanket - Compressor compartment acoustic insulation and sound blanket - Refrigerant pipework accessories - 0 Absent - M - Refrigerant pressure gauges Remote control / Serial communication - 0 Absent - RS485 serial board (Carel / Modbus protocol) - В BACNET IP / PCOWEB serial board (advanced controller required) - BACNET MS/TP / PCONET board (advanced control required) - BACNET IP / PCOWEB serial board + supervision software Gweb (advanced controller G required) - Remote simplified user panel - Remote simplified user panel for advanced controller - Special coils / Protective treatments 10 - Standard - Pre-painted fins with epoxy painting R - Cataphoresis (- Hydrophilic - Copper-copper - Outdoor finned coil heat exchanger protection - Absent - Outdoor finned coil heat exchanger protection grille G - 12 Compressors options - Absent - Power factor capacitors - Soft starter - Power factor capacitors + soft starter - Crankcase compressor heater (CHILLER), outdoor coil trace heater (HP) - 13 Onboard controller - Basic - Advanced | А | CCES: | Sories | | | |----|-------|------------------------------------|--------|--| | 17 | 01546 | Remote simplified user panel | RYRT40 | Tank module connection kit | | RY | KAMF | Spring anti vibration shock mounts | RYT40 | Inertial tank module for under-base installation | | RV | 'ΡΔΜ | Rubber anti vibration shock mounts | | | ### Air chillers and heat pumps MPE #### RATED TECHNICAL DATA MPE C | MPEC | | | T18 | T23 | T25 | T30 | T34 | T42 | T54 | |---|--------|---------|------|------|------|---------------|------|------|------| | Power supply | | V-ph-Hz | | | | 400 - 3N - 50 | | | | | Cooling capacity | (1)(E) | kW | 19,9 | 23,4 | 26,0 | 31,9 | 35,9 | 42,5 | 54,6 | | Total power input | (1)(E) | kW | 7,80 | 8,70 | 8,90 | 10,7 | 12,8 | 15,0 | 18,7 | | EER | (1)(E) | | 2,56 | 2,68 | 2,94 | 2,97 | 2,79 | 2,83 | 2,93 | | SEER | (2)(E) | | 4,10 | 4,10 | 4,10 | 4,10 | 4,11 | 4,10 | 4,10 | | Water flow | (1) | I/h | 3435 | 4041 | 4480 | 5489 | 6181 | 7320 | 9400 | | Water pressure drop | (1)(E) | kPa | 52 | 48 | 35 | 34 | 42 | 37 | 41 | | Available pressure head - LP pumps | (1) | kPa | 111 | 92 | 96 | 126 | 101 | 98 | 145 | | Maximum current absorption | | Α | 32,0 | 39,0 | 40,0 | 44,0 | 48,0 | 44,0 | 55,0 | | Start up current | | Α | 85 | 95 | 96 | 100 | 116 | 164 | 177 | | Startup current with soft starter | | Α | 65 | 73 | 74 | 78 | 90 | 123 | 134 | | Compressors / circuits | | | | | | 2/1 | | | | | Expansion vessel volume | | dm³ | 5 | 5 | 5 | 8 | 8 | 8 | 8 | | Buffer tank volume | | dm³ | 50 | 50 | 50 | 125 | 125 | 125 | 125 | | Sound power level | (3)(E) | dB(A) | 72 | 73 | 73 | 73 | 73 | 74 | 81 | | Transport weight unit with pump and tank | | kg | 232 | 256 | 260 | 448 | 484 | 521 | 643 | | Operating weight unit with pump and full tank | | kg | 282 | 306 | 309 | 555 | 591 | 663 | 751 | | MPEC | | | T57 | T64 | T71 | |---|--------|---------|------|---------------|------------| | Power supply | | V-ph-Hz | | 400 - 3N - 50 | | | Cooling capacity | (1)(E) | kW | 56,9 | 65,8 | 71,5 | | Total power input | (1)(E) | kW | 19,9 | 22,6 | 26,2 | | EER | (1)(E) | | 2,86 | 2,91 | 2,73 | | SEER | (2)(E) | | 4,11 | 4,10 | 4,12 | | Water flow | (1) | l/h | 9795 | 11335 | 12306 | | Water pressure drop | (1)(E) | kPa | 37 | 37 | 37 | | Available pressure head - LP pumps | (1) | kPa | 147 | 142 | 136 | | Maximum current absorption | | Α | 58,0 | 64,0 | 70,0 | | Start up current | | Α | 182 | 196 | 238 | | Startup current with soft starter | | Α | 138 | 149 | 179 | | Compressors / circuits | | | | 2/1 | | | Expansion vessel volume | | dm³ | 8 | 8 | 8 | | Buffer tank volume | | dm³ | 125 | 125 | 125 | | Sound power level | (3)(E) | dB(A) | 81 | 81 | 81 | | Transport weight unit with pump and tank | | kg | 665 | 685 | 786 | | Operating weight unit with pump and full tank | | kg | 773 | 793 | 894 | ⁽¹⁾ Outdoor air temperature 35°C, water temperature 12°C / 7°C (EN14511:2022) (2) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. (3) Sound power level measured according to ISO 9614 (E) EUROVENT certified data #### RATED TECHNICAL DATA MPE H | MPE H | | | 004M | 005M | 007M | 800 | 008M | 009 | 010 | 010M | |---|--------|---------|--------------|--------------|--------------|---------------|--------------|---------------|---------------|--------------| | Power supply | | V-ph-Hz | 230 - 1 - 50 | 230 - 1 - 50 | 230 - 1 - 50 | 400 - 3N - 50 | 230 - 1 - 50 | 400 - 3N - 50 | 400 - 3N - 50 | 230 - 1 - 50 | | Cooling capacity | (1)(E) | kW | 4,00 | 5,00 | 6,70 | 8,30 | 8,10 | 9,20 | 9,10 | 9,00 | | Total power input | (1)(E) | kW | 1,30 | 1,70 | 2,20 | 3,10 | 3,40 | 3,00 | 3,30 | 3,30 | | EER | (1)(E) | |
2,98 | 2,94 | 3,03 | 2,64 | 2,41 | 3,08 | 2,76 | 2,75 | | SEER | (2)(E) | | 3,16 | 3,02 | 3,22 | 3,17 | 2,98 | 3,54 | 3,15 | 3,15 | | Water flow | (1) | l/h | 687 | 858 | 1151 | 1424 | 1401 | 1585 | 1568 | 1554 | | Water pressure drop | (1)(E) | kPa | 5 | 5 | 9 | 6 | 6 | 16 | 33 | 33 | | Available pressure head - LP pumps | (1) | kPa | 77 | 74 | 55 | 67 | 67 | 146 | 115 | 115 | | Heating capacity | (3)(E) | kW | 4,70 | 5,90 | 7,50 | 9,90 | 10,3 | 10,5 | 10,9 | 11,0 | | Total power input | (3)(E) | kW | 1,50 | 1,80 | 2,20 | 3,30 | 3,70 | 3,40 | 3,60 | 3,60 | | COP | (3)(E) | | 3,23 | 3,18 | 3,46 | 2,97 | 2,81 | 3,12 | 3,02 | 3,04 | | SCOP | (2)(E) | | 3,45 | 3,59 | 3,57 | 3,51 | 3,26 | 3,30 | 3,05 | 3,05 | | Heating energy efficiency class | (4)(E) | | | | | A- | + | | | | | Water flow | (3) | l/h | 815 | 1017 | 1307 | 1717 | 1781 | 1823 | 1890 | 1896 | | Water pressure drop | (3)(E) | kPa | 5 | 5 | 11 | 8 | 8 | 21 | 46 | 46 | | Available pressure head - LP pumps | (3) | kPa | 76 | 73 | 54 | 65 | 64 | 143 | 107 | 107 | | Maximum current absorption | | Α | 9,00 | 11,0 | 11,0 | 9,00 | 17,6 | 8,00 | 12,0 | 24,0 | | Start up current | | Α | 38 | 44 | 44 | 49 | 88 | 43 | 49 | 98 | | Startup current with soft starter | | Α | 26 | 30 | 30 | 34 | 66 | 29 | 33 | 68 | | Compressors / circuits | | | | | | 1/ | 1 | | | | | Expansion vessel volume | | dm³ | 1 | 1 | 1 | 1 | 1 | 5 | 5 | 5 | | Buffer tank volume | | dm³ | 20 | 20 | 20 | 20 | 20 | 30 | 30 | 30 | | Sound power level | (5)(E) | dB(A) | 66 | 66 | 68 | 67 | 82 | 69 | 69 | 69 | | Transport weight unit with pump and tank | | kg | 114 | 118 | 123 | 127 | 120 | 211 | 211 | 211 | | Operating weight unit with pump and full tank | | kg | 123 | 127 | 132 | 136 | 129 | 227 | 227 | 227 | | MPE H | | | 013 | 014 | 015 | 018 | 020 | 021 | 024 | |---|--------|---------|------|------|------|---------------|------|------|------| | Power supply | | V-ph-Hz | | | | 400 - 3N - 50 | | | | | Cooling capacity | (1)(E) | kW | 12,6 | 14,0 | 14,6 | 16,7 | 20,8 | 20,1 | 23,2 | | Total power input | (1)(E) | kW | 4,20 | 4,60 | 5,30 | 6,40 | 7,80 | 7,00 | 8,20 | | EER | (1)(E) | | 2,98 | 3,01 | 2,78 | 2,61 | 2,66 | 2,88 | 2,83 | | SEER | (2)(E) | | 3,45 | 3,25 | 3,39 | 3,17 | 3,14 | 3,38 | 3,32 | | Water flow | (1) | l/h | 2174 | 2409 | 2516 | 2886 | 3592 | 3459 | 4000 | | Water pressure drop | (1)(E) | kPa | 59 | 10 | 36 | 49 | 57 | 18 | 47 | | Available pressure head - LP pumps | (1) | kPa | 81 | 139 | 102 | 130 | 109 | 140 | 109 | | Heating capacity | (3)(E) | kW | 15,3 | 15,9 | 17,7 | 20,1 | 23,9 | 24,6 | 27,3 | | Total power input | (3)(E) | kW | 4,80 | 5,00 | 5,60 | 6,80 | 8,00 | 7,30 | 8,30 | | COP | (3)(E) | | 3,19 | 3,17 | 3,16 | 2,94 | 2,99 | 3,39 | 3,28 | | SCOP | (2)(E) | | 3,34 | 3,62 | 3,47 | 3,22 | 3,22 | 3,55 | 3,44 | | Heating energy efficiency class | (4)(E) | | | | | A+ | | | | | Water flow | (3) | l/h | 2642 | 2764 | 3060 | 3479 | 4139 | 4264 | 4720 | | Water pressure drop | (3)(E) | kPa | 86 | 12 | 52 | 70 | 75 | 27 | 63 | | Available pressure head - LP pumps | (3) | kPa | 69 | 138 | 95 | 116 | 93 | 135 | 106 | | Maximum current absorption | | Α | 15,0 | 11,0 | 18,0 | 22,0 | 24,0 | 24,0 | 26,0 | | Start up current | | Α | 64 | 67 | 67 | 76 | 105 | 158 | 159 | | Startup current with soft starter | | Α | 44 | 46 | 46 | 51 | 72 | 110 | 110 | | Compressors / circuits | | | | | | 1/1 | | | | | Expansion vessel volume | | dm³ | 5 | 5 | 5 | 5 | 5 | 5 | 5 | | Buffer tank volume | | dm³ | 30 | 50 | 30 | 50 | 50 | 50 | 50 | | Sound power level | (5)(E) | dB(A) | 69 | 71 | 69 | 71 | 71 | 74 | 72 | | Transport weight unit with pump and tank | | kg | 216 | 219 | 219 | 265 | 281 | 281 | 297 | | Operating weight unit with pump and full tank | | kg | 232 | 236 | 236 | 301 | 317 | 317 | 333 | Outdoor air temperature 35°C, water temperature 12°C/7°C (EN14511:2022) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Outdoor air temperature dry bulb 7°C / wet bulb 6°C, water temperature 40°C / 45°C (EN14511:2022) Seasonal energy efficiency class for LOW TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A + A + D N the range A+++→D] (5) Sound power level measured according to ISO 9614 (E) EUROVENT certified data #### Air chillers and heat pumps MPE #### RATED TECHNICAL DATA MPE H | MPE H | | | 027 | 028 | T30 | 032 | T34 | 035 | 040 | |---|--------|---------|------|------|------|---------------|------|------|------| | Power supply | | V-ph-Hz | | | | 400 - 3N - 50 | | | • | | Cooling capacity | (1)(E) | kW | 26,0 | 27,4 | 29,4 | 30,8 | 33,3 | 34,1 | 38,8 | | Total power input | (1)(E) | kW | 9,5 | 8,80 | 10,5 | 10,2 | 12,7 | 11,7 | 12,9 | | EER | (1)(E) | | 2,74 | 3,11 | 2,80 | 3,02 | 2,62 | 2,91 | 3,00 | | SEER | (2)(E) | | 3,32 | 3,71 | 3,85 | 3,58 | 3,78 | 3,58 | 3,66 | | Water flow | (1) | l/h | 4469 | 4722 | 5062 | 5309 | 5736 | 5873 | 6686 | | Water pressure drop | (1)(E) | kPa | 32 | 39 | 29 | 49 | 37 | 39 | 42 | | Available pressure head - LP pumps | (1) | kPa | 118 | 139 | 146 | 120 | 130 | 126 | 115 | | Heating capacity | (3)(E) | kW | 30,0 | 31,4 | 34,5 | 35,8 | 39,3 | 39,3 | 44,3 | | Total power input | (3)(E) | kW | 9,00 | 9,30 | 11,1 | 10,7 | 13,0 | 11,8 | 13,4 | | COP | (3)(E) | | 3,32 | 3,37 | 3,12 | 3,34 | 3,03 | 3,34 | 3,31 | | SCOP | (2)(E) | | 3,57 | 3,60 | 3,66 | 3,64 | 3,70 | 3,70 | 3,64 | | Heating energy efficiency class | (4)(E) | | | | | A+ | | | | | Water flow | (3) | l/h | 5189 | 5438 | 5975 | 6190 | 6801 | 6809 | 7675 | | Water pressure drop | (3)(E) | kPa | 43 | 50 | 39 | 64 | 51 | 51 | 53 | | Available pressure head - LP pumps | (3) | kPa | 115 | 134 | 137 | 113 | 117 | 118 | 111 | | Maximum current absorption | | Α | 32,0 | 32,0 | 37,0 | 34,0 | 43,0 | 38,0 | 40,0 | | Start up current | | Α | 133 | 134 | 86 | 166 | 96 | 162 | 164 | | Startup current with soft starter | | Α | 91 | 91 | 64 | 114 | 71 | 111 | 112 | | Compressors / circuits | | | 1/1 | 1/1 | 2/1 | 1/1 | 2/1 | 1/1 | 1/1 | | Expansion vessel volume | | dm³ | 5 | 8 | 8 | 8 | 8 | 8 | 8 | | Buffer tank volume | | dm³ | 50 | 125 | 125 | 125 | 125 | 125 | 125 | | Sound power level | (5)(E) | dB(A) | 72 | 73 | 76 | 73 | 72 | 73 | 75 | | Transport weight unit with pump and tank | | kg | 313 | 427 | 448 | 456 | 484 | 487 | 516 | | Operating weight unit with pump and full tank | | kg | 350 | 534 | 555 | 563 | 591 | 595 | 624 | | | • | | | | | | | | | | MPEH | | | T42 | 054 | T54 | T61 | 066 | T69 | T76 | |---|--------|---------|------|-------|-------|---------------|-------|-------|-------| | Power supply | | V-ph-Hz | | | | 400 - 3N - 50 | | | | | Cooling capacity | (1)(E) | kW | 42,5 | 51,8 | 53,2 | 60,5 | 62,5 | 68,5 | 74,5 | | Total power input | (1)(E) | kW | 15,2 | 18,1 | 18,6 | 21,7 | 24,5 | 24,0 | 28,0 | | EER | (1)(E) | | 2,79 | 2,86 | 2,86 | 2,79 | 2,55 | 2,85 | 2,66 | | SEER | (2)(E) | | 3,76 | 3,57 | 3,77 | 3,78 | 3,18 | 3,42 | 3,97 | | Water flow | (1) | l/h | 7320 | 8938 | 9173 | 10425 | 10763 | 11800 | 12837 | | Water pressure drop | (1)(E) | kPa | 37 | 56 | 51 | 64 | 53 | 50 | 58 | | Available pressure head - LP pumps | (1) | kPa | 98 | 107 | 138 | 122 | 89 | 129 | 115 | | Heating capacity | (3)(E) | kW | 48,0 | 61,2 | 60,3 | 67,8 | 75,5 | 76,6 | 85,2 | | Total power input | (3)(E) | kW | 16,1 | 18,9 | 18,9 | 22,1 | 23,8 | 23,9 | 27,4 | | COP | (3)(E) | | 2,98 | 3,24 | 3,19 | 3,07 | 3,18 | 3,21 | 3,11 | | SCOP | (2)(E) | | 3,68 | 3,58 | 3,55 | 3,47 | 3,48 | 3,67 | 3,56 | | Heating energy efficiency class | (4)(E) | | | | | A+ | | | | | Water flow | (3) | l/h | 8308 | 10578 | 10440 | 11736 | 13063 | 13266 | 14740 | | Water pressure drop | (3)(E) | kPa | 47 | 82 | 58 | 74 | 81 | 56 | 69 | | Available pressure head - LP pumps | (3) | kPa | 84 | 90 | 137 | 116 | 66 | 124 | 105 | | Maximum current absorption | | Α | 44,0 | 46,0 | 48,0 | 53,0 | 41,0 | 57,0 | 69,0 | | Start up current | | Α | 164 | 163 | 177 | 187 | 165 | 202 | 229 | | Startup current with soft starter | | Α | 123 | 110 | 130 | 138 | 112 | 149 | 169 | | Compressors / circuits | | | 2/1 | 1/1 | 2/1 | 2/1 | 1/1 | 2/1 | 2/1 | | Expansion vessel volume | | dm³ | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | Buffer tank volume | | dm³ | 125 | 125 | 125 | 125 | 125 | 125 | 125 | | Sound power level | (5)(E) | dB(A) | 74 | 78 | 81 | 81 | 78 | 81 | 81 | | Transport weight unit with pump and tank | | kg | 521 | 521 | 643 | 665 | 558 | 685 | 786 | | Operating weight unit with pump and full tank | | kg | 629 | 630 | 751 | 773 | 665 | 793 | 894 | Outdoor air temperature 35°C, water temperature 12°C/7°C (EN14511:2022) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Outdoor air temperature dry bulb 7°C/ wet bulb 6°C, water temperature 40°C/45°C (EN14511:2022) Seasonal energy efficiency class for LOW TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the process AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the process AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the process AVERAGE climatic conditions [EUROPEAN REGULATION No
811/2013. The energy efficiency class of this product is included in the process AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the process AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the process AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the process AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the process AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the process AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013]. the range A+++→D] (5) Sound power level measured according to ISO 9614 (E) EUROVENT certified data #### DIMENSIONAL DRAWINGS | 1 | Water inlet 1" female | |---|--| | 2 | Water outlet 1" female | | 3 | Safety valve discharge outlet provided with rubber ring holder | | 4 | Water supply ½" male (optional tap) | | 5 | Water drainage 1/2" female | | 6 | Power supply ø 28 mm | | 7 | Electric control board | | 8 | Fastening points for vibration dampers (accessory) | MPE 9 - 15 ## Air chillers and heat pumps MPE #### DIMENSIONAL DRAWINGS | 1 | Water inlet 1" 1/4 female | |---|--| | 2 | Water outlet 1" 1/4 female | | 3 | Safety valve discharge outlet provided with rubber ring holder | | 4 | Water supply ½" male (optional tap) | | 5 | Water drainage 1/2" female | | 6 | Power supply ø 28 mm | | 7 | Electric control board | | 8 | Vibration dumpers | | | | #### DIMENSIONAL DRAWINGS # MPE 14 H + MPE 18 - 27 1588 605 2 4 3 1 186 7 | 1 | Water inlet 1" 1/4 female | |---|--| | 2 | Water outlet 1" 1/4 female | | 3 | Safety valve discharge outlet provided with rubber ring holder | | 4 | Water supply ½" male (optional tap) | | 5 | Water drainage 1/2" female | | 6 | Power supply ø 28 mm | | 7 | Electric control board | | 8 | Vibration dumpers | | | | # Air chillers and heat pumps MPE # DIMENSIONAL DRAWINGS # MPET18 - T23 - T25 ### LEGEND | 1 | Water inlet 1" 1/4 female | |----|--| | 2 | Water outlet 1" 1/4 female | | 3 | Safety valve discharge outlet provided with rubber ring holder | | 4 | Water supply ½" male (optional tap) | | 5 | Water drainage 1/2" female | | 6 | Power supply ø 28 mm | | 7 | Lifting points | | 8 | Vibration dumpers | | 9 | Electric control board | | 10 | User interface | | | | # Air chillers and heat pumps MPE | LEGEN | ND . | |-------|--| | 1 | Water inlet 2" female | | 2 | Water outlet 2" female | | 3 | Water drainage 1/2" female | | 4 | Power supply | | 5 | Electric control board | | 6 | Fastening points for vibration dampers | | | | # Air Chiller and PDC with low GWP chiller MLI # High-efficiency full inverter compact outdoor packaged units # **MLI 5 - 30 kW** Refrigerant Cooling execution compressor 3-way external valve management # pumps MII is a range of heat pumps consisting of 9 up High efficiency full inverter heat MLI is a range of heat pumps consisting of 9 unit sizes and 10 models, equipped with a state-of-the-art inverter compressor capable of efficiently meeting the cooling or thermal power requirements of residential or light commercial buildings. All models, that access to tax deductions prouded for by actual law, takes full advantage of some of the most innovative HVAC technologies: in fact, all the units are full-inverter and the extended use of electrical motors with permanent magnets driven by inverters with direct current, even for the accessory components – such as fans and water circulators – drastically reduces electrical power consumption and minimizes it under every operating condition, ensuring an energy efficiency level that puts them solidly in class A++ or A+++. Thanks to the advanced management strategies that have been implemented, the control electronics integrate the functioning of the units'key components, thereby optimizing interaction between the main parts: compressor, fan, and water circulator. # **PLUS** - » Twin-rotary compressor driven by an electric EC motor - » EC hydraulic pump - » EC axial fan - » Advanced system management and adjustment strategies - » Access to tax deductions ### **INERTIAL TANK MODULE OPTION** From size 006 to size 016, the module with 50-litre inertial tank for under-base installation is available as an option. The kit includes the buffer tank, galvanised sheet steel protective structure in the same RAL as the unit, and hydraulic and mechanical connection components. It is possible to use the tank as a 4-connection circuit breaker or as an in-line buffer tank by closing two of the four available connections with plugs supplied as standard. ### MAIN COMPONENTS ### Control unit The user terminal of the MLI series heat pumps is not a simple remote control, but a sophisticated controller that is capable of extending the basic functions implemented in the unit's electronics. It allows you not only to manage with absolute ease the basic daily functions the machine is intended to provide (on and off, setting the operating mode, instant activation of predefined comfort settings), but also to access advanced programming levels. Customized time slots according to real usage needs and the ability to implement climatic curves on the basis of which to modulate the operation of the unit in order to maximize the overall efficiency of the heating and air-conditioning system, in addition to the ability to manage external equipment such as dehumidifiers, additional hydraulic circulators for primary/secondary loop systems, 3-way valves for the production of domestic hot water and boilers or external backup devices, are just some of the advantages offered to users by this powerful interface. The clear and ergonomic display of the main parameters and the ability to provide in-depth diagnoses of operation are a valuable aid for the maintenance and service operations, it is also possible to remotely control the main functions via smartphone, through the dedicated app. ### **Heat exchanger** Brazed-welded plate condenser in AISI 316 corrosion resistant austenitic stainless steel, specifically developed to maximise heat exchange coefficients between water and refrigerant. ### Fan The sound levels are especially low thanks to the use of a specially designed fan with airfoil blades that is able to ensure a high air flow rate with limited noise emission. ### Compressor Hermetic twin-rotary compressor driven by a permanent magnet BLDC motor and equipped with a double acoustic insulation is fixed to the base by means of vibration-damping supports. ### EXTENDED OPERATING RANGE FOR EACH APPLICATION MLI series heat pumps were designed to ensure maximum flexibility in every application. Thanks to their extremely wide operating range ensuring the operation even in particularly cold climates and allowing them to produce water up to a maximum of $65\,^{\circ}$ C and to the advanced adjustment logics provided by the electronic control, they are able to ensure not only winter heating and summer air conditioning, but also the production of thermal energy to be used for domestic hot water production. The high efficiency values that characterize them make it possible, in many cases, to cover the share of renewable energy required by the most recent regulations on limiting energy consumption and to benefit from the tax credits offered by the legislation of many countries that are dedicated to promoting equipment that meets the highest standards. ## PERFORMANCE AND FUNCTIONALITY ALWAYS ON TOP The control unit is able to activate an alternative heat generator (boiler or heating element) and employ its operation according to various user-configurable logics in unfavorable weather conditions and particularly high thermal loads, in order to integrate the missing heat capacity or to completely replace heat generation. This feature can also be used during the defrost phases, in order to balance the energy extracted from the heat transfer fluid to melt the ice present on the outside of the heat exchanger, or in the case of machine stoppage due to malfunction or maintenance. All the models of the MLI range feature extremely compact size and low weight, which allow them to be installed even in environments with high population density and particularly small installation spaces. This is contributed to also by the multi-speed inverter circulator and the expansion tank integrated in the internal hydronic module, thus making superfluous the use of a dedicated technical compartment and in this manner simplifying and speeding up the installation operations. The units'structural metallwork was designed to facilitate maintenance operations and allow easy access to the main internal parts even in the case of limited clearance. # Air Chiller and PDC with low GWP chiller MLI ### RATED TECHNICAL DATA | MLI | | | 006M | M800 | 010M | 012M | 016 | 016M | |------------------------------------|--------|-----------------|----------|----------|----------|----------|-----------|----------| | Power supply | | V-ph-Hz | 230-1-50 | 230-1-50 | 230-1-50 | 230-1-50 | 400-3N-50 | 230-1-50 | | Cooling capacity | (1)(E) | kW | 7,00 | 7,45 | 8,20 | 11,5 | 14,0 | 14,0 | | Total power input | (1)(E) | kW | 2,33 | 2,22 | 2,52 | 4,18 | 5,60 | 5,60 | | EER | (1)(E) | | 3,00 | 3,35 | 3,25 | 2,75 | 2,50 | 2,50 | | SEER | (2)(E) | | 5,34 | 5,83 | 5,98 | 4,89 | 4,67 | 4,69 | | ηςς | (2)(E) | | 209 | 229 | 234 | 194 | 183 | 184 | | Water flow | (1) | I/h | 1204 | 1281 | 1410 | 1978 | 2408 | 2408 | | Available pressure head - LP pumps | (1)(E) | kPa | 83 |
82 | 80 | 64 | 49 | 49 | | Heating capacity | (3)(E) | kW | 6,30 | 8,10 | 10,0 | 12,3 | 16,0 | 16,0 | | Total power input | (3)(E) | kW | 1,70 | 2,10 | 2,67 | 3,32 | 4,57 | 4,57 | | COP | (3)(E) | | 3,70 | 3,85 | 3,75 | 3,70 | 3,50 | 3,50 | | SCOP | (2)(E) | | 4,95 | 5,21 | 5,19 | 4,81 | 4,62 | 4,62 | | ηsh | (2)(E) | | 195 | 205 | 204 | 189 | 181 | 181 | | Heating energy efficiency class | (4) | | | | A+ | ++ | | | | SCOP | (2)(E) | | 3,52 | 3,36 | 3,49 | 3,45 | 3,41 | 3,41 | | ηsh | (2)(E) | | 137 | 131 | 136 | 135 | 133 | 133 | | Heating energy efficiency class | (5) | | | | A | ++ | | | | Water flow | (3) | l/h | 1084 | 1393 | 1720 | 2116 | 2752 | 2752 | | Available pressure head - LP pumps | (3)(E) | kPa | 85 | 80 | 70 | 64 | 49 | 49 | | Cooling capacity | (6)(E) | kW | 6,50 | 8,30 | 9,90 | 12,0 | 14,2 | 14,2 | | Total power input | (6)(E) | kW | 1,35 | 1,64 | 2,18 | 3,04 | 3,93 | 3,93 | | EER | (6)(E) | | 4,80 | 5,05 | 4,55 | 3,95 | 3,61 | 3,61 | | Heating capacity | (7)(E) | kW | 6,35 | 8,40 | 10,0 | 12,1 | 15,9 | 15,9 | | Total power input | (7)(E) | kW | 1,28 | 1,63 | 2,02 | 2,44 | 3,53 | 3,53 | | COP | (7)(E) | | 4,95 | 5,15 | 4,95 | 4,95 | 4,50 | 4,50 | | Maximum current absorption | | Α | 18,0 | 19,0 | 19,0 | 30,0 | 14,0 | 30,0 | | Compressors / circuits | | | 1/1 | | | | | | | Expansion vessel volume | | dm ³ | 8 | 8 | 8 | 8 | 8 | 8 | | Sound power level | (8)(E) | dB(A) | 58 | 59 | 60 | 65 | 68 | 68 | | Operating weight - unit with pump | | kg | 126 | 153 | 153 | 175 | 193 | 175 | Outdoor air temperature dry bulb 7°C / wet bulb 6°C, water temperature 30°C / 35°C (EN14511:2022) Sound power level measured according to ISO 9614 (E) EUROVENT certified data ⁽¹⁾ Outdoor air temperature 35°C, water temperature 12°C / 7°C (EN14511:2022) (2) n efficiency values for heating and cooling are respectively calculated by the following formulas: [n = SCOP / 2,5 - F(1) - F(2)] e [n = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. (3) Outdoor air temperature dry bulb 7°C / water temperature 40°C / 45°C (EN14511:2022) (4) Seasonal energy efficiency class for LOW TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++ → D] (5) Seasonal energy efficiency class for MEDIUM TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++ → D] (6) Outdoor air temperature 35°C, water temperature 23°C / 18°C (EN14511:2022) (7) Outdoor air temperature dry bulb 7°C / wet bulb 6°C, water temperature 30°C / 35°C (EN14511:2022) ### RATED TECHNICAL DATA | MLI | | | 018 | 022 | 026 | 030 | | |------------------------------------|-----------------------|-------|------|------|------|------|--| | Power supply | 400-3N-50 | | | | | | | | Cooling capacity | (1)(E) | kW | 17,0 | 21,0 | 26,0 | 29,5 | | | Total power input | (1)(E) | kW | 5,57 | 7,12 | 9,63 | 11,6 | | | EER | (1)(E) | | 3,05 | 2,95 | 2,70 | 2,55 | | | SEER | (2)(E) | | 4,49 | 4,66 | 4,70 | 4,70 | | | ηςς | (2)(E) | | 177 | 183 | 185 | 185 | | | Water flow | (1) | I/h | 2924 | 3612 | 4472 | 5074 | | | Available pressure head - LP pumps | (1)(E) | kPa | 102 | 95 | 78 | 61 | | | Heating capacity | (3)(E) | kW | 18,0 | 22,0 | 26,0 | 30,0 | | | Total power input | (3)(E) | kW | 5,14 | 6,47 | 8,39 | 10,3 | | | СОР | (3)(E) | | 3,50 | 3,40 | 3,10 | 2,90 | | | SCOP | (2)(E) | | 4,60 | 4,53 | 4,50 | 4,19 | | | ηsh | (2)(E) | | 181 | 178 | 177 | 165 | | | Heating energy efficiency class | (4) | | A+++ | A+++ | A+++ | A++ | | | SCOP | (2)(E) | | 3,21 | 3,22 | 3,14 | 3,14 | | | ηsh | (2)(E) | | 125 | 126 | 123 | 123 | | | Heating energy efficiency class | (5) | | A++ | A++ | A+ | A+ | | | Water flow | (3) | l/h | 3096 | 3784 | 4472 | 5159 | | | Available pressure head - LP pumps | (3)(E) | kPa | 100 | 91 | 77 | 58 | | | Cooling capacity | (6)(E) | kW | 18,5 | 23,0 | 27,0 | 31,0 | | | Total power input | (6)(E) | kW | 3,89 | 5,00 | 6,28 | 7,75 | | | EER | (6)(E) | | 4,75 | 4,60 | 4,30 | 4,00 | | | Heating capacity | (7)(E) | kW | 18,0 | 22,0 | 26,0 | 30,1 | | | Total power input | (7)(E) | kW | 3,83 | 5,00 | 6,37 | 7,70 | | | СОР | (7)(E) | | 4,70 | 4,40 | 4,08 | 3,91 | | | Maximum current absorption | | Α | 18,0 | 21,0 | 24,0 | 28,0 | | | Compressors / circuits | ompressors / circuits | | | 1/1 | | | | | Expansion vessel volume | | dm³ | 8 | 8 | 8 | 8 | | | Sound power level | (8)(E) | dB(A) | 71 | 73 | 75 | 77 | | | Operating weight - unit with pump | | kg | 206 | 206 | 206 | 206 | | - Outdoor air temperature 35°C, water temperature 12°C / 7°C (EN14511:2022) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 F(1) F(2)] e [η = SEER / 2,5 F(1) F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 - regulation. 3) Outdoor air temperature dry bulb 7°C / wet bulb 6°C, water temperature 40°C / 45°C (EN14511:2022) 4) Seasonal energy efficiency class for LOW TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++→ D] 5) Seasonal energy efficiency class for MEDIUM TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++→ D] 6) Outdoor air temperature 3°C, water temperature 23°C / 18°C (EN14511:2022) 7) Outdoor air temperature dry bulb 7°C / wet bulb 6°C, water temperature 30°C / 35°C (EN14511:2022) - (8) Sound power level measured according to ISO 9614 (E) EUROVENT certified data # Air Chiller and PDC with low GWP chiller MLI # Air Chiller and PDC with low GWP chiller DLI # Split units with EC compressor # **DLI 06 - 16 kW** Refrigerant 3-way valve management compressor Heating/ Split version Cooling # pumps PLL is a range of heat numps consisting of 5 un High efficiency full inverter heat DLI is a range of heat pumps consisting of 5 unit sizes and 7 models, equipped with a state-of-the-art inverter compressor capable of efficiently meeting the cooling or thermal power requirements of residential or light commercial buildings. All models, that access to tax deductions prouded for by actual law, takes full advantage of some of the most innovative HVAC technologies: in fact, all the units are full-inverter and the extended use of electrical motors with permanent magnets driven by inverters with direct current, even for the accessory components – such as fans and water circulators – drastically reduces electrical power consumption and minimizes it under every operating condition, ensuring an energy efficiency level that puts them solidly in class A++ or A+++. Thanks to the advanced management strategies that have been implemented, the control electronics integrate the functioning of the units' key components, thereby optimizing interaction between the main parts: compressor, fan, and water circulator. # **PLUS** - » Twin-rotary compressor driven by an electric EC motor - » EC hydraulic pump - » EC axial fan - » Advanced system management and adjustment strategies - » Access to tax deductions The DLI system always consists of: an outdoor unit (OLI identification code) which is combined with an indoor unit (ILI identification code). Double option for indoor unit It is possible to choose between two different options: IL-I*M wall-mounted indoor unit with reduced dimensions and connections arranged in the lower part to simplify the installation phase, and ILI*S all-in-one floor-standing indoor unit with 240 I tank, resistance electric power of 3 kW and built-in three-way valve for the direct production of domestic hot water. ### MAIN COMPONENTS ### Control unit The user terminal of the DLI series heat pumps is not a simple remote control, but a sophisticated controller that is capable of extending the basic functions implemented in the unit's electronics. It allows you not only to manage with absolute ease the basic daily functions the machine is intended to provide (on and off, setting the operating mode, instant activation of predefined comfort settings), but also to access advanced programming levels. Customized time slots according to real usage needs and the ability to implement climatic curves on the basis of which to modulate the operation of the unit in order to maximize the overall efficiency of the heating and air-conditioning system, in addition to the ability to manage external equipment such as dehumidifiers, additional hydraulic circulators for primary/secondary loop systems, 3-way valves for the production of domestic hot water and boilers or external backup devices, are just some of the advantages offered to users by this powerful interface. The clear and ergonomic display of the main parameters and the ability to provide in-depth diagnoses of operation are a valuable aid for the maintenance and service operations, it is also possible to remotely control the main functions via smartphone, through the dedicated app. The maximum total length of the pipes for the connection between the outdoor unit and the indoor unit is 30 meters. The maximum difference in height allowed between the two units is instead 20 metres. ### EXTENDED OPERATING RANGE FOR EACH APPLICATION DLI series heat pumps were designed to ensure maximum flexibility in every application. Thanks to their extremely wide operating range ensuring the operation even in particularly cold climates and allowing them to produce water up to a maximum of 65 $^{\circ}$ C and to the advanced adjustment logics provided by the electronic control, they are able to ensure not only winter heating and summer
air conditioning, but also the production of thermal energy to be used for domestic hot water production. The high efficiency values that characterize them make it possible, in many cases, to cover the share of renewable energy required by the most recent regulations on limiting energy consumption and to benefit from the tax credits offered by the legislation of many countries that are dedicated to promoting equipment that meets the highest standards. ### PERFORMANCE AND FUNCTIONALITY ALWAYS ON TOP The control unit is able to activate an alternative heat generator (boiler or heating element) and employ its operation according to various user-configurable logics in unfavorable weather conditions and particularly high thermal loads, in order to integrate the missing heat capacity or to completely replace heat generation. This feature can also be used during the defrost phases, in order to balance the energy extracted from the heat transfer fluid to melt the ice present on the outside of the heat exchanger, or in the case of machine stoppage due to malfunction or maintenance. All the models of the DLI range feature extremely compact size and low weight, which allow them to be installed even in environments with high population density and particularly small installation spaces. The units' structural metalwork was designed to facilitate maintenance operations and allow easy access to the main internal parts even in the case of limited clearance. # Air Chiller and PDC with low GWP chiller DLI ### RATED TECHNICAL DATA OUTDOOR UNIT OLI | DLI | | | 006M | 008M | 010M | 012 | | |------------------------------------|---------|-----------------|----------|----------|----------|-----------|--| | Power supply | | V-ph-Hz | 230-1-50 | 230-1-50 | 230-1-50 | 400-3N-50 | | | Cooling capacity | (1)(E) | kW | 7,00 | 7,40 | 8,20 | 11,6 | | | Total power input | (1)(E) | kW | 2,33 | 2,19 | 2,48 | 4,22 | | | EER | (1)(E) | | 3,00 | 3,38 | 3,31 | 2,75 | | | SEER | (2)(E) | | 5,34 | 5,83 | 5,98 | 4,87 | | | ηςς | (2)(E) | | 209 | 229 | 234 | 195 | | | Water flow | (1) | I/h | 1204 | 1273 | 1410 | 1995 | | | Available pressure head - LP pumps | (1)(E) | kPa | 83 | 82 | 80 | 64 | | | Heating capacity | (3)(E) | kW | 6,35 | 8,20 | 10,0 | 12,3 | | | Total power input | (3)(E) | kW | 1,69 | 2,08 | 2,63 | 3,24 | | | COP | (3)(E) | | 3,76 | 3,94 | 3,80 | 3,80 | | | SCOP | (4)(E) | | 4,95 | 5,21 | 5,19 | 4,81 | | | ηsh | (4)(E) | | 195 | 206 | 205 | 189 | | | Heating energy efficiency class | (5) | | A+++ | | | | | | SCOP | (6)(E) | | 3,52 | 3,36 | 3,49 | 3,45 | | | ηsh | (6)(E) | | 138 | 132 | 137 | 135 | | | Heating energy efficiency class | (7) | | | AH | -+ | | | | Water flow | (3) | l/h | 1092 | 1410 | 1720 | 2116 | | | Available pressure head - LP pumps | (3)(E) | kPa | 85 | 80 | 70 | 65 | | | Cooling capacity | (8)(E) | kW | 6,55 | 8,40 | 10,0 | 12,0 | | | Total power input | (8)(E) | kW | 1,34 | 1,66 | 2,08 | 3,00 | | | EER | (8)(E) | | 4,89 | 5,06 | 4,81 | 4,00 | | | Heating capacity | (9)(E) | kW | 6,20 | 8,30 | 10,0 | 12,1 | | | Total power input | (9)(E) | kW | 1,24 | 1,60 | 2,00 | 2,44 | | | СОР | (9)(E) | | 5,00 | 5,19 | 5,00 | 4,96 | | | Maximum current absorption | | A | 18 | 19 | 19 | 14 | | | Compressors / circuits | | | 1/1 | | | | | | Expansion vessel volume | | dm ³ | 8 | 8 | 8 | 8 | | | Sound power level | (10)(E) | dB(A) | 58 | 59 | 60 | 68 | | | Refrigerant charge | (11) | kg | 1,50 | 1,65 | 1,65 | 1,84 | | | Weight | | kg | 63,5 | 89 | 89 | 112 | | (1) Outdoor air temperature 35°C, water temperature 12°C / 7°C (EN14511:2022) the finite of the string and cooling are respectively calculated by the following formulas: $[\eta = SCOP/2,5 - F(1) - F(2)] e [\eta = SEER/2,5 - F(1) - F(2)]$. For further information, please refer to the technical document "Fr? 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Low temperature conditions. Seasonal energy efficiency class for LOW TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range $A+++\to D$] nefficiency values for heating and cooling are respectively calculated by the following formulas: [n = SCOP / 2,5 - F(1) - F(2)] e [n = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Medium temperature conditions. Seasonal energy efficiency class for MEDIUM TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++→D] (8) Outdoor air temperature 35°C, water temperature 23°C/18°C (EN14511:2022) (9) Outdoor air temperature dry bulb 7°C/wet bulb 6°C, water temperature 30°C/35°C (EN14511:2022) (10) Sound power level measured according to ISO 9614 (11) Kg gas value is estimated. For the exact value refer to the plate data on the unit. (E) EUROVENT certified data ⁽²⁾ η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. (3) Outdoor air temperature dry bulb 7°C / wet bulb 6°C, water temperature 40°C / 45°C (EN14511:2022) ### RATED TECHNICAL DATA OUTDOOR UNIT OLI | DLI | | | 012M | 016 | 016M | |------------------------------------|---------|---------|----------|-----------|----------| | Power supply | | V-ph-Hz | 230-1-50 | 400-3N-50 | 230-1-50 | | Cooling capacity | (1)(E) | kW | 11,6 | 14,0 | 14,0 | | Total power input | (1)(E) | kW | 4,22 | 5,71 | 5,71 | | EER | (1)(E) | | 2,75 | 2,45 | 2,45 | | SEER | (2)(E) | | 4,89 | 4,67 | 4,69 | | ηςς | (2)(E) | | 194 | 184 | 183 | | Water flow | (1) | I/h | 1995 | 2408 | 2408 | | Available pressure head - LP pumps | (1)(E) | kPa | 64 | 49 | 49 | | Heating capacity | (3)(E) | kW | 12,3 | 16,0 | 16,0 | | Total power input | (3)(E) | kW | 3,24 | 4,44 | 4,44 | | COP | (3)(E) | | 3,80 | 3,60 | 3,60 | | SCOP | (4)(E) | | 4,81 | 4,62 | 4,62 | | ηsh | (4)(E) | | 189 | 182 | 182 | | Heating energy efficiency class | (5) | | | | | | SCOP | (6)(E) | | 3,45 | 3,41 | 3,41 | | ηsh | (6)(E) | | 135 | 133 | 133 | | Heating energy efficiency class | (7) | | | A++ | | | Water flow | (3) | I/h | 2116 | 2752 | 2752 | | Available pressure head - LP pumps | (3)(E) | kPa | 64 | 49 | 49 | | Cooling capacity | (8)(E) | kW | 12,0 | 14,9 | 14,9 | | Total power input | (8)(E) | kW | 3,00 | 4,38 | 4,38 | | EER | (8)(E) | | 4,00 | 3,40 | 3,40 | | Heating capacity | (9)(E) | kW | 12,1 | 16,0 | 16,0 | | Total power input | (9)(E) | kW | 2,44 | 3,56 | 3,56 | | COP | (9)(E) | | 4,96 | 4,49 | 4,49 | | Maximum current absorption | | A | 30 | 14 | 30 | | Compressors / circuits | | | | 1/1 | | | Expansion vessel volume | | dm³ | 8 | 8 | 8 | | Sound power level | (10)(E) | dB(A) | 64 | 68 | 64 | | Refrigerant charge | (11) | kg | 1,84 | 1,84 | 1,84 | | Weight | | kg | 97 | 112 | 97 | - Outdoor air temperature 35°C, water temperature 12°C / 7°C (EN14511:2022) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 F(1) F(2)] e [η = SEER / 2,5 F(1) F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. - Outdoor air temperature dry bulb 6° C, wet bulb 6° C, water temperature 40° C / 48° C (EN14S11:2022) 10° C | - Seasonal energy efficiency class for LOW TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range $A+++\rightarrow D$] η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 F(1) F(2)] e [η = SEER / 2,5 F(1) F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Medium temperature conditions. - Seasonal energy efficiency class for MEDIUM TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency dass of this product is included in the range $A+++\to D$] Outdoor air temperature 35°C, water temperature 23°C/18°C (EN14511:2022) Outdoor air temperature dry bulb 7°C/wet bulb 6°C, water temperature 30°C/35°C (EN14511:2022) - (10) Sound power level measured according to ISO 9614 - (11) Kg gas value is estimated. For the exact value refer to the plate data on the unit. - (E) EUROVENT certified data # Air Chiller and PDC with low GWP chiller DLI # DIMENSIONAL DRAWINGS # **DLI 006** ### LEGENDA ILI M | 1 | Connection gas refrigerant 5/8" - 18 UNF | |-------|---| | 2 | Connection liquid refrigerant 1/4" - 28 UNF | | 3 | Condensate discharge Ø 25 mm | | 4 | Water inlet R1" | | 5 | Water outlet R1" | | LEGEN | DA ILI S | | 1 | Connection gas refrigerant 5/8" - 18 UNF | | 2 | Connection liquid refrigerant 3/8" - 24 UNF | | 3 | Domestic hot water outlet R3/4" | | 4 | Domestic hot water recirculation inlet (connection with dice) | | 5 | Domestic hot water inlet R3/4" | | 6 | Hot / cold system water inlet R1" | | 7 | Hot / cold system water outlet R1" | | 8 | Condensate discharge Ø 25 mm | | | 006M | | | | |-------|-------------|---|--|--| | | 0105 | 006M | | | | kg | 6. | 3,5 | | | | kg | 170 | 43 | | | | db(A) | 5 | 58 | | | | db(A) | 38 | 38 | | | | | kg
db(A) | kg 6.5 kg 170 db(A) 5 | | | # DIMENSIONAL DRAWINGS # DLI 008-016 ### LEGENDA ILI M
 1 | Connection gas refrigerant 5/8" - 18 UNF | |--------|---| | 2 | Connection liquid refrigerant 3/8" - 24 UNF | | 3 | Condensate discharge Ø 25 mm | | 4 | Water inlet R1" | | 5 | Water outlet R1" | | LEGEND | A ILI S | | 1 | Connection gas refrigerant 5/8" - 18 UNF | | 2 | Connection liquid refrigerant 3/8" - 24 UNF | | 3 | Domestic hot water outlet R3/4" | | 4 | Domestic hot water recirculation inlet (connection with dice) | | 5 | Domestic hot water inlet R3/4" | | 6 | Hot / cold system water inlet R1" | | 7 | Hot / cold system water outlet R1" | | 8 | Condensate discharge Ø 25 mm | | | | | | | | OLI 008M ILI 010S 010M OLI 010M 010M ILI 010S 010M OLI 012/012M 016M | | | | |--|-----|----------|------| | OLI 010M ILI 010S 010M OLI 012/012M | OLI | 008M | l | | ILI 010S 010M
OLI 012/012M | ILI | 010S | 010M | | OLI 012/012M | OLI | 010M | I | | | ILI | 010S | 010M | | III 016S 016M | OLI | 012 / 01 | 2M | | 100 | ILI | 016S | 016M | | OLI 016/016M | OLI | 016/01 | 6M | | ILI 016S 016M | ILI | 016S | 016M | | OLI | | 00 | 8M | 01 | 0M | 01 | 2M | 0 | 12 | 01 | 6M | 0 | 16 | |-------------------------------|-------|------|------|------|------|------|------|------|------|------|------|------|------| | III | | 0105 | 010M | 0105 | 010M | 0165 | 016M | 016S | 016M | 0165 | 016M | 0165 | 016M | | OLI - Weight | kg | 8 | 39 | 8 | 9 | 9 | 7 | 1 | 12 | 9 | 7 | 1 | 12 | | ILI - Weight | kg | 170 | 43 | 170 | 43 | 172 | 45 | 172 | 45 | 172 | 45 | 172 | 45 | | OLI - Sound pressure level Lw | db(A) | 5 | 59 | 6 | 0 | 6 | 4 | (| 58 | 6 | 4 | 6 | 8 | | ILI - Sound power level | db(A) | 40 | 42 | 40 | 42 | 42 | 43 | 42 | 43 | 44 | 43 | 44 | 43 | # Air heat pumps with natural refrigeran MLP # High-efficiency full inverter compact outdoor packaged units # MLP 06 - 16 kW Refrigerant Heating/ Coolina Packaged execution compressor external valve - » Twin-rotary compressor driven by an electric EC motor - » EC hydraulic pump - » EC axial fan - » Advanced system management and adjustment strategies - » Access to tax deductions - » Very Low GWP natural refrigerant - » Production of hot water up to 75°C # High efficiency full inverter heat pumps MLP is a range of heat pumps consisting of 5 unit sizes and 7 models, equipped with a latest generation inverter compressor capable of satisfying the requests for cooling, heating and DHW production power in buildings in the most efficient way residential or light commercial. Thanks to the use of R290, MLP heat pumps guarantee high performance with wide working ranges. The high seasonal efficiencies and the very low GWP make it the ideal product for achieving thermo-hygrometric well-being while fully respecting the environment. All models, that access to tax deductions prouded for by actual law, takes full advantage of some of the most innovative HVAC technologies: in fact, all the units are full-inverter and the extended use of electrical motors with permanent magnets driven by inverters with direct current, even for the accessory components – such as fans and water circulators – drastically reduces electrical power consumption and minimizes it under every operating condition, ensuring an energy efficiency level. The hermetically sealed electrical panel also guarantees greater reliability and safety. Thanks to the advanced management strategies that have been implemented, the control electronics integrate the functioning of the units' key components, thereby optimizing interaction between the main parts: compressor, fan, and water R290 (propane) is a natural refrigerant. Its very low GWP value, equal to 3, makes it the optimal solution to help reduce the environmental impact of greenhouse gases and therefore global warming. Furthermore, due to its technical characteristics, it allows the working range of heat pumps to be expanded, allowing their use even in extreme and very harsh conditions, guaranteeing the production of high temperature water. We manage to guarantee an outlet water temperature of 50°C even with external temperatures of -25°C, reaching a maximum of 75°C starting from -10°C. Due to its flammability (class A3), particular attention must be paid to the characteristics of the installation site. The regulatory legislation EN 378 part 3 specifies the requirements to be respected for the safe management of the installation site. ### MAIN COMPONENTS New controller with color screen, touch key design and intuitive interface that improves customer experience. The heat pump user terminal MLP is a sophisticated controller capable of extending the basic functions of the electronics on board the machine. In addition to managing the main functions, it also allows access to advanced programming levels. Customized time slots and the possibility of implementing climate curves allow to modulate the operation of the machine and maximize the overall efficiency of the heating and air conditioning system. It allows the management of external equipment such as dehumidifiers, additional hydraulic circulators, three-way valves for the production of domestic hot water and boilers or other external backup devices. Easy to install thanks to a non-polarized wiring connection. ### EXTENDED OPERATING RANGE FOR EACH APPLICATION MLP series heat pumps were designed to ensure maximum flexibility in every application. Thanks to their extremely wide operating range ensuring the operation even in particularly cold climates and allowing them to produce water up to a maximum of 75°C and to the advanced adjustment logics provided by the electronic control, they are able to ensure not only winter heating and summer air conditioning, but also the production of thermal energy to be used for domestic hot water production. Thanks to the use of propane, MLP is able to guarantee hot water at 55°C with an external temperature of -25°C, up to a maximum of 75°C with a minimum external temperature of -10°C ### INSTALLATION EXAMPLE With MLP it is possible to connect up to 6 machines in cascade, and manage up to two different zones. At the same time it is possible to manage an external three-way valve for the management of domestic hot water production. # Air heat pumps with natural refrigeran MLP ### RATED TECHNICAL DATA | MLP | | | 006HM | 008HM | 010HM | 012H0 | | |------------------------------------|---------|-----------------|----------|----------|----------|-----------|--| | Power supply | | V-ph-Hz | 230-1-50 | 230-1-50 | 230-1-50 | 400-3N-50 | | | Cooling capacity | (1)(E) | kW | 6,80 | 7,50 | 8,90 | 11,5 | | | Total power input | (1)(E) | kW | 2,19 | 2,17 | 2,74 | 3,77 | | | EER | (1)(E) | | 3,10 | 3,45 | 3,25 | 3,05 | | | SEER | (2)(E) | | 5,32 | 5,86 | 5,55 | 5,19 | | | ηsc | (2)(E) | | 210 | 231 | 219 | 204 | | | Water flow | (1) | I/h | 1170 | 1290 | 1531 | 1978 | | | Available pressure head - LP pumps | (1)(E) | kPa | 84 | 82 | 77 | 64 | | | Heating capacity | (3)(E) | kW | 6,40 | 8,20 | 10,0 | 12,0 | | | Total power input | (3)(E) | kW | 1,68 | 2,13 | 2,74 | 3,24 | | | COP | (3)(E) | | 3,80 | 3,85 | 3,65 | 3,70 | | | SCOP | (4)(E) | | 4,89 | 5,19 | 5,07 | 4,67 | | | ηsh | (4)(E) | | 193 | 204 | 200 | 184 | | | Heating energy efficiency class | (5) | | A+++ | | | | | | SCOP | (6)(E) | | 3,82 | 3,82 | 3,82 | 3,62 | | | ηsh | (6)(E) | | 150 | 150 | 150 | 142 | | | Heating energy efficiency class | (7) | | | A+ | + | | | | Water flow | (3) | l/h | 1101 | 1410 | 1720 | 2064 | | | Available pressure head - LP pumps | (3)(E) | kPa | 85 | 80 | 70 | 61 | | | Cooling capacity | (8)(E) | kW | 6,50 | 8,30 | 10,0 | 12,0 | | | Total power input | (8)(E) | kW | 1,27 | 1,61 | 2,11 | 2,67 | | | EER | (8)(E) | | 5,10 | 5,15 | 4,75 | 4,50 | | | Heating capacity | (9)(E) | kW | 6,20 | 8,40 | 10,0 | 12,0 | | | Total power input | (9)(E) | kW | 1,27 | 1,68 | 2,13 | 2,50 | | | СОР | (9)(E) | | 4,90 | 5,00 | 4,69 | 4,80 | | | Maximum current absorption | | A | 15,0 | 19,0 | 19,0 | 11,0 | | | Expansion vessel volume | | dm ³ | 8 | 8 | 8 | 8 | | | Sound power level | (10)(E) | dB(A) | 58 | 60 | 61 | 65 | | | Operating weight - unit with pump | | kg | 90 | 117 | 117 | 137 | | (1) Outdoor air temperature 35°C, water temperature 12°C / 7°C (EN14511:2022) included in the range A+++ \rightarrow D] Outdoor air temperature 35°C, water temperature 23°C / 18°C (EN14511:2022) Outdoor air temperature dry bulb 7°C / wet bulb 6°C, water temperature 30°C / 35°C (EN14511:2022) (10) Sound power level measured according to ISO 9614 (E) EUROVENT certified data ⁽¹⁾ Outdoor air temperature 3°C, water temperature 12°C / 7°C (EN14511:2022) (2) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. (3) Outdoor air temperature dry bulb 7°C / wet bulb 6°C, water temperature 40°C / 45°C (EN14511:2022) (4) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Low temperature conditions. (5) Seasonal energy efficiency class for LOW TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the page A b (1 + 2 + 2). ### RATED TECHNICAL DATA | MLP | | | 012HM | 016H0 | 016HM | |------------------------------------|---------|---------|----------|-----------|----------| | Power supply | | V-ph-Hz |
230-1-50 | 400-3N-50 | 230-1-50 | | Cooling capacity | (1)(E) | kW | 11,5 | 14,0 | 14,0 | | Total power input | (1)(E) | kW | 3,77 | 5,09 | 5,09 | | EER | (1)(E) | | 3,05 | 2,75 | 2,75 | | SEER | (2)(E) | | 5,19 | 5,12 | 5,12 | | ηsc | (2)(E) | | 204 | 202 | 202 | | Water flow | (1) | I/h | 1978 | 2408 | 2408 | | Available pressure head - LP pumps | (1)(E) | kPa | 64 | 49 | 49 | | Heating capacity | (3)(E) | kW | 12,0 | 15,0 | 15,0 | | Total power input | (3)(E) | kW | 3,24 | 4,48 | 4,48 | | СОР | (3)(E) | | 3,70 | 3,35 | 3,35 | | SCOP | (4)(E) | | 4,67 | 4,59 | 4,59 | | ηsh | (4)(E) | | 184 | 181 | 181 | | Heating energy efficiency class | (5) | | | A+++ | | | SCOP | (6)(E) | | 3,62 | 3,57 | 3,57 | | ηsh | (6)(E) | | 142 | 140 | 140 | | Heating energy efficiency class | (7) | | | A++ | | | Water flow | (3) | I/h | 2064 | 2580 | 2580 | | Available pressure head - LP pumps | (3)(E) | kPa | 61 | 44 | 44 | | Cooling capacity | (8)(E) | kW | 12,0 | 16,0 | 16,0 | | Total power input | (8)(E) | kW | 2,67 | 4,10 | 4,10 | | EER | (8)(E) | | 4,50 | 3,90 | 3,90 | | Heating capacity | (9)(E) | kW | 12,0 | 15,0 | 15,0 | | Total power input | (9)(E) | kW | 2,50 | 3,41 | 3,41 | | COP | (9)(E) | | 4,80 | 4,40 | 4,40 | | Maximum current absorption | | Α | 31,0 | 11,0 | 31,0 | | Expansion vessel volume | | dm³ | 8 | 8 | 8 | | Sound power level | (10)(E) | dB(A) | 65 | 69 | 69 | | Operating weight - unit with pump | | kg | 135 | 137 | 135 | - Outdoor air temperature 35°C, water temperature 12°C/7°C (EN14511:2022) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 F(1) F(2)] e [η = SEER / 2,5 F(1) F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Outdoor air temperature dry bulb 7°C / wet bulb 6°C, water temperature 40°C / 45°C (EN14511:2022) - η efficiency values for heating and cooling are respectively calculated by the following formulas: $[\eta = SCOP / 2.5 F(1) F(2)] e [\eta = SEER / 2.5 F(1) F(2)]$. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Low temperature conditions. - Seasonal energy efficiency class for LOW TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range $A+++\to D$] η efficiency values for heating and cooling are respectively calculated by the following formulas: $[\eta = SCOP/2, 5 - F(1) - F(2)] = [\eta = SEER/2, 5 - F(1) - F(2)]$. For further - information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Medium temperature conditions. - (7) Seasonal energy efficiency class for MEDIUM TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++ → D] (8) Outdoor air temperature 35°C, water temperature 23°C / 18°C (EN14511:2022) (9) Outdoor air temperature dry bulb 7°C / wet bulb 6°C, water temperature 30°C / 35°C (EN14511:2022) - (10) Sound power level measured according to ISO 9614 - (E) EUROVENT certified data # Air heat pumps with natural refrigeran MLP MLP016HM MLP016H0 415 415 ## DIMENSIONAL DRAWINGS 200 200 715 715 # PLP Chillers and Inverter HP with natural refrigerant # Outdoor packaged unit with R290 # **PLP 37 - 63 kW** R-290 R-290 Cooling only Heating/ # compressor # Heat pumps with inverter compressor and low GWP refrigerant The reduction of polluting emissions, whether directly related to the use of greenhouse gases or more indirectly related to emissions from the production of electricity used during the lifetime of a heat pump, is the first and most important pillar on which Galletti has based its Advanced Design approach. This has led to the creation of PLP, a new range of natural refrigerant air/water units with inverter compressors. Its extremely wide operating range and high performance under all operating conditions make it the perfect answer to the need to phase out the use of fossil fuels for heating and cooling buildings. Thanks to the high temperature of the water produced (up to 80°C), we can replace a fossil fuel generator while maintaining the full performance of the existing emissions system. By taking advantage of the continuous modulation of compressor capacity, we produce exactly what is needed to keep people comfortable, no more and no less, without waste, working to maximise the efficiency of the whole system. We look to the future of our environment as well as the needs of the people who use our products. We work every day to make indoor comfort more sustainable. # **PLUS** R290 refrigerant (GWP=3) Inverter driven variable speed scroll compressor Very low refrigerant charge (< 5 kg) Production of hot water up to 80°C Full load operation down to -20°C air (60°C water) Very high seasonal efficiency values SCOP up to 4,50 and SEER up Power output and COP monitoring (option) Availability of silenced setups PLP heat pumps and water chillers are designed for heating or cooling. The use of the natural refrigerant R290 (propane) ensures complithe water to be used in air-conditioning systems for residential, com- ance with the more stringent limits imposed by the F-GAS regulamercial or industrial use. tion regarding gases with a potential contribution to global warming (greenhouse gases). | CONFIGURATOR | | | | | | | | | | | | | | | | | | |---|------------|-------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----| | The models are completely configurable by selecting the | Version | Field | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | version and the options. To the right is shown an example of configuration. | PLP057HS2A | | | | | 0 | E | E | 0 | 0 | 0 | I | G | 0 | 1 | 0 | 1 | To verify the compatibility of the options, use the selection software or the price list. ### **AVAILABLE VERSIONS** Only cooling versions Power supply 400V-3N-50Hz + circuit breaker PLP..CS5A Power supply 400V-3N-50Hz + circuit breaker + transformer ### **CONFIGURATION OPTIONS** - 1 **Expansion valve** - Electronic valve - 2 Water pump and accessories - Absent - Single standard pump - Standard dual OR pump - Single HP pump - Dual HP OR pump - Standard dual OR pump with Viton seal Standard dual OR pump with Viton seal Single HP pump with Viton seal Dual HP OR pump with Viton seal - Single inverter standard pump - Standard dual inverter OR pump - Dual inverter Single HP pump Dual inverter HP OR pump Standard single inverter pump with Viton seal Standard dual inverter OR pump with Viton seal - Single inverter HP pump with Viton seal Dual inverter HP OR pump with Viton seal - 3 Water buffer tank - Absent Selected S - De-superheater - Absent - D Included with pump free contact - 5 **Condensation/Evaporation Control** - Phase-cut (up to size 57) With EC Fans (available for all models, standard only on 62) Antifreezing kit Plate exchangers only - Plate exchanger and pump - For plate exchanger, pump and tank - For plate exchanger and tank - Acoustic insulation and attenuation - Absent - Reversible heat pump versions - PLP..HS2A Power supply 400V-3-50Hz + circuit breaker - PLP..HS5A Power supply 400V-3N-50Hz + circuit breaker + transformer - Compressor soundproof insulation + low-noise fans **Refrigeration circuit options** 8 Compressor soundproof insulation 0 Absent 2 - Remote control - Absent - RS485 connection port (Modbus protocol or Carel) - BACNET IP/pCOWeb serial board BACNET IP/pCOWeb serial board + supervision software Simplified additional remote control panel Additional remote control for advanced control (up to 50m) - Special coils / Protective treatments 10 - Cataphoresis (only for HP versions) - Microchannel in Long Life Alloy (standard for chiller) Hydrophilic (standard for HP, only for HP versions) Microcanali con e-coating (solo versione C) Pre-painted fins with epoxy painting (only HP versions) Rame-rame (solo versione H) - **Base vibration dampers** - 0 Absent - M - Made of rubber With spring **Outdoor coil trace heater** 12 - Absent - Present (only HP versions) - 13 - Control panel - Advanced - 14 - Water flow control Water differential pressure switch Hot-wire electronic flow switch - DHW accessory only (if option 3 = 0) 15 - Absent - 3-way DHW valve + DHW tank probe - DHW mode enabling with dry contact DHW 3-way valve + DHW mode enabling with dry contact | ACC | ESSORIES | | | |-----|--|---|---| | В | Outdoor finned coil heat exchanger protection grille | N | Integration system enabling contact (boiler / electric heater) plant | | C | Smart Grid Certification (excludes accessory E) | 0 | Night-time low-noise (only if opt 7 is different from 5) | | D | ON/OFF status of the compressors (mandatory only if opt.4 = D) | Q | Temperature probe for pump shutdown on the primary circuit | | E | Remote control for power step limits (excludes accessories C) | R | Enabling 2nd set-point | | F | Configurable digital alarm board | T | Mains power analyzer for monitoring of power consumption | | G | Air separator for the water system (supplied loose) | U | Unit lifting pipes | | Н | Dirt separator for the water system (supplide loose) | V | Set-point modification with 4-20mA signal | | I | Refrigerant sensors (standard) | Z | Flow meter for calculating power output | | L | Double insulation water side (as standard for tank) | 1 | Integration system enabling contact (electric heater) DHW (only if opt 15 different from 0) | | M | 0-10V signal
for external user pump control (only if opt $2=0$) | 2 | Outdoor finned coil heat exchanger protection filters | # PLP Chillers and Inverter HP with natural refrigerant ### Natural refrigerant (R290) R290 (propane) is a natural refrigerant with a GWP (Global Warming Potential) of only 3. This makes it a strong contender to be one of the leading refrigerants for air conditioning solutions. It has a much lower contribution to the greenhouse effect than synthetic refrigerants and physical properties that make it ideal for the design requirements associated with the ever-increasing use of heat pumps. ### **Inverter scroll compressors** The inverter scroll compressor used is part of the fourth and latest generation of scroll compressors offering a variable speed solution. In addition to the advantages offered by the technology (precise cooling and humidity management, low starting current, precise and seasonal energy efficiency), these compressors are equipped with specific features that add value to the PLP range. These include intermediate discharge valves, which increase efficiency at low compression ratios and further improve partial-load efficiency, and permanent magnet brushless motors. # EXTENDED OPERATING RANGE FOR EACH APPLICATION ### **Extremely extended operating limits** It is now clear that heat pumps will play a fundamental role in achieving the objectives of the European Green Deal, first and foremost the phasing out of fossil fuels. One of the basic requirements for the heat pump to be considered as a valid alternative to boilers, even in the most hostile climates, is undoubtedly the extension of the operating limits that have characterised the traditional heat pumps used until now Thanks to the use of scroll inverter technology, combined with the use of propane as a refrigerant and the innovative solutions developed by Galletti's Advanced Design Unit during the design and prototyping phase, PLP guarantees the possibility of producing hot water at very high temperatures (up to 80°C) and operating at full load at extremely low outdoor temperatures (down to -20°C). In this way (given the temperatures of the water produced, which cannot be achieved with traditional heat pumps), we can imagine replacing a combustion generator with an R290 heat pump, even if the insulation work on the casing is postponed to a later stage. This makes it possible to significantly increase the proportion of renewable energy used for heating without compromising indoor comfort. Advanced Design's solutions look to the future of our environment and the needs of the people who use our products. # PLP C WATER CHILLERS RATED TECHNICAL DATA | PLP | | | 037 | 045 | 052 | 057 | 062 | |--------------------------------------|--------|---------|------|------|-----------|------|------| | Power supply | | V-ph-Hz | | • | 400-3N-50 | | • | | Cooling capacity | (1)(E) | kW | 36,0 | 41,4 | 46,7 | 51,2 | 57,1 | | Total power input | (1)(E) | kW | 12,0 | 14,0 | 16,4 | 18,1 | 19,2 | | EER | (1)(E) | | 3,01 | 2,97 | 2,84 | 2,83 | 2,97 | | SEER | (2)(E) | | 5,00 | 4,88 | 5,02 | 5,02 | 5,24 | | Water flow | (1) | l/h | 6201 | 7140 | 8038 | 8814 | 9843 | | Water pressure drop | (1)(E) | kPa | 37 | 50 | 37 | 44 | 45 | | Available pressure head - LP pumps | (1) | kPa | 125 | 89 | 120 | 113 | 111 | | Available pressure head - HP pumps | (1) | kPa | 213 | 173 | 205 | 199 | 196 | | Compressors / circuits | | | | | 1/1 | | | | Maximum current absorption | | Α | 42,0 | 48,0 | 56,0 | 59,0 | 62,0 | | Start up current | | Α | 43 | 50 | 57 | 61 | 63 | | Buffer tank volume | | dm³ | 125 | 125 | 125 | 125 | 125 | | Sound power level | (3)(E) | dB(A) | 82 | 83 | 83 | 83 | 84 | | Sound power level, low-noise version | (3) | dB(A) | 79 | 80 | 80 | 80 | 81 | | Weight without options | | kg | 449 | 449 | 456 | 456 | 538 | | Maximum transport weight | | kg | 567 | 567 | 586 | 586 | 686 | Outdoor air temperature 35°C, water temperature 12°C / 7°C (EN14511:2022) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Sound power level measured according to ISO 9614 EUROVENT certified data # PLP Chillers and Inverter HP with natural refrigerant ### HEAT PUMPS RATED TECHNICAL DATA PLP H | PLP | | | 037 | 045 | 052 | 057 | 062 | |--------------------------------------|--------|---------|------|------|----------|------|-------| | Power supply | | V-ph-Hz | | • | 400-3-50 | | | | Cooling capacity | (1)(E) | kW | 30,0 | 35,7 | 41,6 | 45,5 | 50,3 | | Total power input | (1)(E) | kW | 12,0 | 14,4 | 16,8 | 18,2 | 19,3 | | EER | (1)(E) | | 2,49 | 2,48 | 2,48 | 2,50 | 2,60 | | SEER | (2)(E) | | 4,32 | 4,24 | 4,15 | 4,12 | 4,45 | | Water flow | (1) | l/h | 5165 | 6143 | 7155 | 7832 | 8653 | | Water pressure drop | (1)(E) | kPa | 28 | 39 | 30 | 34 | 36 | | Available pressure head - LP pumps | (1) | kPa | 145 | 114 | 131 | 126 | 123 | | Available pressure head - HP pumps | (1) | kPa | 234 | 200 | 217 | 211 | 209 | | Heating capacity | (3)(E) | kW | 37,2 | 45,7 | 52,5 | 57,1 | 63,0 | | Total power input | (3)(E) | kW | 11,0 | 13,8 | 15,8 | 17,3 | 18,8 | | COP | (3)(E) | | 3,37 | 3,31 | 3,32 | 3,31 | 3,35 | | SCOP | (4)(E) | | 4,50 | 4,20 | 4,35 | 4,25 | 4,49 | | Heating energy efficiency class | (5)(E) | | A+++ | A++ | A++ | A++ | A++ | | Water flow | (3) | l/h | 6442 | 7906 | 9087 | 9887 | 10903 | | Water pressure drop | (3)(E) | kPa | 44 | 62 | 48 | 56 | 60 | | Available pressure head - LP pumps | (3) | kPa | 114 | 70 | 108 | 101 | 93 | | Available pressure head - HP pumps | (3) | kPa | 200 | 154 | 193 | 185 | 178 | | Maximum current absorption | | Α | 42,0 | 48,0 | 56,0 | 59,0 | 62,0 | | Compressors / circuits | | | | | 1/1 | | | | Buffer tank volume | | dm³ | 125 | 125 | 125 | 125 | 125 | | Sound power level | (6)(E) | dB(A) | 82 | 83 | 83 | 83 | 84 | | Sound power level, low-noise version | (6) | dB(A) | 79 | 80 | 80 | 80 | 81 | | Weight without options | | kg | 495 | 495 | 500 | 500 | 535 | | Maximum transport weight | | kg | 625 | 625 | 635 | 635 | 695 | Ng b∠5 625 635 635 695 Outdoor air temperature 35°C, water temperature 12°C / 7°C (EN14511:2022) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Outdoor air temperature dry bulb 7°C / wet bulb 6°C, water temperature 40°C / 45°C (EN14511:2022) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Low temperature conditions. Seasonal energy efficiency class for LOW TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++ → D] Sound power level measured according to ISO 9614 EUROVENT certified data # DIMENSIONAL DRAWINGS LEGEND | 2 | Water outlet 1" 1/2 F | | |---|--------------------------------|--| | 3 | Water drainage 1/2 " F | | | 4 | Desuperheater water inlet 1" F | | Water inlet 1" 1/2 F | 3 | Water drainage 1/2 " F | | |---|----------------------------------|--| | 4 | Desuperheater water inlet 1" F | | | 5 | De-superheater water outlet 1" F | | | 6 | Vibration dumpers | |---|--------------------| | 7 | Lifting points | | 8 | User interface | | 9 | Power supply input | | | | # PLI Inverter Chillers and HP with Low GWP refrigerant # High-efficiency full inverter compact outdoor packaged units # PLI 35 - 55 kW R-454B Packaged **PLUS** - » Refrigerant with GWP of less than 500 - » Inverter driven variable speed scroll compressor - » Reduced refrigerant charge thanks to the use of microchannel (C versions) or mini-channel (H versions) coils - » Production of water from -10°C to 60°C - » High seasonal efficiency values (ErP 2021 compliant) - » Electronic expansion valve as standard - » High configurability and wide availability of accessories - » Availability of standard acoustic execution or in silenced configuration # Heat pumps with inverter compressor and low GWP refrigerant PLI is Galletti's new range of air-cooled packaged chillers and heat pumps for outdoor installation featuring with inverter-driven modulating scroll compressor and R454B refrigerant. R454B is a next generation A2L refrigerant with a GWP of only 467, one of the lowest on the market. This GWP value ensures that the PLI range complies with the gradual reduction of greenhouse gas emissions required by the F-GAS regulation, down to the stricter limits foreseen for 2030. Not only that, the use of finned coils with reduced diameters for the passage of the refrigerant (micro-channels for only cooling versions and mini-channels for reversible heat pumps) allows a reduction of the refrigerant charge by more than 50% compared to similar products with same capacity but with standard technology. The range consists of 4 models with cooling capacities from 35 to 50 kW, available as cooling only and reversible heat pump mode. The inverter controller allows to adjust the capacity and the input of the compressor to the actual thermal load and makes it possible to considerably reduce electrical intakes at the compressor start-up (reduction of starting currents) and during the operation under partial loads. The use of top quality components at the cutting edge of technology in the cooling, hydraulic, and electrical systems makes PLI chillers state of the
art in terms of efficiency, reliability, and operating limits. In fact, the ability to produce water from -10°C to 60°C, and full load operation with external air from -15°C to 48°C. The range allows high configurability from an acoustic and hydraulic point of view, having ample accessories designed to meet installation needs characterized by reduced overall dimensions: without increasing the size it is possible to provide on board the storage tank and up to a maximum of two hydraulic pumps. Advanced control, which is always provided across the entire range, allows continuous monitoring of operating parameters, advanced regulation logics, and connectivity. PLI heat pumps and water chillers are designed for heating or cooling the water to be used in air-conditioning systems for residential, commercial, or industrial use. The use of low-GWP refrigerant ensures compliance with the limits established by the F-GAS regulation regarding gases that potentially contribute to global warming (greenhouse gases). | CONFIGURATOR | | | | | | | | | | | | | | | | |---|------------|-------|---|---|---|---|---|---|---|---|---|----|----|----|----| | The models are completely configurable by selecting the version and | Version | Field | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | the options. To the right is shown an example of configuration. | PLI050HS0A | | Α | 1 | S | 0 | Ε | 0 | 0 | 2 | 0 | 0 | G | 0 | 1 | To verify the compatibility of the options, use the selection software or the price list. ### **AVAILABLE VERSIONS** | Only cooling v | ersions | |----------------|---| | PLICSOA | Power supply 400V-3N-50Hz | | PLICS2A | Power supply 400V-3N-50Hz + circuit breaker | Power supply 400V-3-50Hz + transformer PLI..CS5A Power supply 400V-3N-50Hz + circuit breaker + transformer ### CONFIGURATION OPTIONS | 1 | Expa | nsion | valve | | |---|------|-------|-------|--| | | | | | | Electronic PLI..CS4A ### 2 Water pump and accessories 0 Absent Single standard pump Double standard pump OR Single HP pump HP OR double pump Single standard pump Inverter Double standard pump Inverter OR Inverter Single HP pump HP OR inverter double pump 3 Water buffer tank 0 Absent S Selected 4 Partial heat recovery Absent D Included with pump free contact Air flow modulation with EC Fans high pressure head Phase-cut with EC Fans 6 Antifreezing kit Absent Plate exchangers only ${\sf Plate\ exchanger+pump+expansion\ vassel}$ Plate exchanger + pump + expansion vassel and tank **Acoustic insulation and attenuation** Reversible heat pump versions PLI..HSOA Power supply 400V-3-50Hz Power supply 400V-3-50Hz + circuit breaker PLI..HS2A PLI..HS4A Power supply 400V-3-50Hz + transformer PLI..HS5A Power supply 400V-3N-50Hz + circuit breaker + transformer 0 Absent Compressor compartment acoustic insulation and sound blanket 8 Refrigerant pipework accessories Absent 9 Remote control / Serial communication 0 Absent RS485 connection port (Modbus protocol or Carel) В BACNET IP/pCOWeb serial board BACNET IP / pCOWeb serial board + supervision software Remote simplified control panel Remote control panel for advanced controller Special coils / Protective treatments 10 Copper-aluminium (standard heat pump only) Cataphoresis treatment on fins and coil carpentry Microchannel in Long Life Alloy (standard for chiller) Hydrophilic (heat pump only) Microchannel with e-coating (chiller only) Pre-painted fins with polyester paint (only heat pump) Copper-copper (heat pump only) 11 **Base vibration dampers** 0 Absent Made of rubber G Μ With spring Outdoor coil trace heater 12 0 Present (heat pump only) 13 Onboard controller Advanced | ACC | ESSORIES | | | |-----|---|---|---| | Α | 3 way valve for DHW production (water tank not allowed) | N | Compressor tandem/trio isolation valves | | В | Outdoor finned coil heat exchanger protection grille | P | DHW request from digital input | | D | ON/OFF status of the compressors | Q | Temperature probe for pump shutdown on the primary circuit | | E | Remote control for step capacity limit (advanced controller required) | R | Enabling 2nd set-point / external alarm signaling via digital input | | F | Configurable digital alarm board (advanced controller required) | T | Energy metering kit | | I | Refrigerant sensors | U | Unit lifting pipes | | L | Water pipes additional insulation | V | Set-point modification with 4-20mA signal | | M | 0-10 V signal for external user pump control (on-board pump excluded) | Z | Outdoor finned coil heat exchanger protection filters | ### MAIN COMPONENTS ### **Inverter scroll compressors** The Danfoss VZH inverter scroll compressor is part of the third and latest generation of scroll compressors offering variable speed technology. In addition to the advantages offered by the technology (precise cooling and humidity management, low starting current, energy efficiency, etc.), VZH scroll inverters have specific features that offer added value to the PLI range. These include Intermediate Relief Valves (IDV) which increase efficiency at low pressure ratios, further increasing efficiency at part load, and permanent magnet brushless motors. Not only that, the operational maps have been expanded to meet the needs of maximum efficiency for multiple applications in the HVAC world. The sound levels are especially low thanks to the use of a specially designed fan with airfoil blades that is able to ensure a high air flow rate with limited noise emission. # PLI Inverter Chillers and HP with Low GWP refrigerant ### **Very low GWP refrigerant** Use of R454B refrigerant with low environmental impact. R454B is a next-generation A2L refrigerant with a GWP of only 467, one of the lowest on the market. This GWP value ensures that the PLI range complies with the gradual reduction of quotas of greenhouse refrigerants in the European market required by the F-GAS regulation, down to the stricter limits foreseen for 2030 ### **Heat exchanger** Brazed-welded plate condenser in AISI 316 corrosion resistant austenitic stainless steel, specifically developed to maximise heat exchange coefficients between water and refrigerant. ### EXTENDED OPERATING RANGE FOR EACH APPLICATION PLI series heat pumps were designed to ensure maximum flexibility in every application. Thanks to their extremely wide operating range ensuring the operation even in particularly cold climates and allowing them to produce water up to a maximum of 60 °C and to the advanced adjustment logics provided by the electronic control, they are able to ensure not only winter heating and summer air conditioning, but also the production of thermal energy to be used for domestic hot water production. The high efficiency values that characterize them make it possible, in many cases, to cover the share of renewable energy required by the most recent regulations on limiting energy consumption and to benefit from the tax credits offered by the legislation of many countries that are dedicated to promoting equipment that meets the highest standards. ### PERFORMANCE AND FUNCTIONALITY ALWAYS ON TOP The control unit is able to activate an alternative heat generator (boiler or heating element) and employ its operation according to various user-configurable logics in unfavorable weather conditions and particularly high thermal loads, in order to integrate the missing heat capacity or to completely replace heat generation. This feature can also be used during the defrost phases, in order to balance the energy extracted from the heat transfer fluid to melt the ice present on the outside of the heat exchanger, or in the case of machine stoppage due to malfunction or maintenance. # PLI C WATER CHILLERS RATED TECHNICAL DATA | PLI | | | 035 | 040 | 045 | 050 | | | | |--------------------------------------|--------|---------|-----------|------|------|------|--|--|--| | Power supply | | V-ph-Hz | 400-3N-50 | | | | | | | | Cooling capacity | (1)(E) | kW | 36,6 | 43,1 | 48,4 | 53,4 | | | | | Total power input | (1)(E) | kW | 12,3 | 14,3 | 15,6 | 17,8 | | | | | EER | (1)(E) | | 2,98 | 3,01 | 3,11 | 3,00 | | | | | SEER | (2)(E) | | 5,04 | 5,17 | 5,28 | 5,21 | | | | | Water flow | (1) | l/h | 6308 | 7427 | 8334 | 9190 | | | | | Water pressure drop | (1)(E) | kPa | 28 | 35 | 43 | 39 | | | | | Available pressure head - LP pumps | (1) | kPa | 124 | 102 | 78 | 63 | | | | | Available pressure head - HP pumps | (1) | kPa | 211 | 187 | 161 | 144 | | | | | Compressors / circuits | | | 1/1 | | | | | | | | Maximum current absorption | | Α | 44,0 | 46,0 | 49,0 | 50,0 | | | | | Start up current | | Α | 60 | 60 | 60 | 60 | | | | | Buffer tank volume | | dm³ | 125 | 125 | 125 | 125 | | | | | Sound power level | (3)(E) | dB(A) | 82 | 84 | 84 | 85 | | | | | Sound power level, low-noise version | (3) | dB(A) | 79 | 81 | 81 | 82 | | | | | Weight without options | | kg | 405 | 409 | 433 | 434 | | | | | Maximum transport weight | | kg | 462 | 467 | 486 | 488 | | | | - (1) Outdoor air temperature 35°C, water temperature 12°C / 7°C (EN14511:2022) (2) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 F(1) F(2)] e [η = SEER / 2,5 F(1) F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. - Sound power level measured according to ISO 9614 - **EUROVENT** certified data ### PLI H HEAT PUMPS RATED TECHNICAL DATA | PLI | 035 | 040 | 045 | 050 | | | | | |--------------------------------------|--------|---------|-----------|------|------|------|--|--| | Power supply | | V-ph-Hz | 400-3N-50 | | | | | | | Cooling capacity | (1)(E) | kW | 33,6 | 39,7 | 44,9 | 49,1 | | | | Total power input | (1)(E) | kW | 13,0 |
15,3 | 16,3 | 18,8 | | | | EER | (1)(E) | | 2,58 | 2,59 | 2,75 | 2,61 | | | | SEER | (2)(E) | | 4,12 | 4,40 | 4,57 | 4,56 | | | | Water flow | (1) | l/h | 5784 | 6829 | 7737 | 8451 | | | | Water pressure drop | (1)(E) | kPa | 24 | 30 | 52,9 | 33 | | | | Available pressure head - LP pumps | (1) | kPa | 127 | 112 | 65 | 65 | | | | Available pressure head - HP pumps | (1) | kPa | 213 | 198 | 148 | 147 | | | | Heating capacity | (3)(E) | kW | 34,7 | 43,3 | 45,9 | 52,3 | | | | Total power input | (3)(E) | kW | 11,7 | 13,9 | 14,4 | 16,6 | | | | COP | (3)(E) | | 2,95 | 3,12 | 3,19 | 3,15 | | | | SCOP | (4)(E) | | 3,40 | 3,82 | 3,99 | 4,07 | | | | Heating energy efficiency class | (5)(E) | | A+ | A++ | A++ | A++ | | | | Water flow | (3) | l/h | 6013 | 7511 | 7959 | 9071 | | | | Water pressure drop | (3)(E) | kPa | 30 | 34 | 50,7 | 36 | | | | Available pressure head - LP pumps | (3) | kPa | 108 | 92 | 51 | 44 | | | | Available pressure head - HP pumps | (3) | kPa | 192 | 175 | 131 | 124 | | | | Maximum current absorption | | Α | 44,0 | 46,0 | 49,0 | 50,0 | | | | Start up current | | Α | 60 | 60 | 60 | 60 | | | | Compressors / circuits | | | 1/1 | | | | | | | Buffer tank volume | | dm³ | 125 | 125 | 125 | 125 | | | | Sound power level | (6)(E) | dB(A) | 82 | 84 | 84 | 85 | | | | Sound power level, low-noise version | (6) | dB(A) | 79 | 81 | 81 | 82 | | | | Weight without options | | kg | 407 | 413 | 438 | 438 | | | | Maximum transport weight | | kg | 465 | 470 | 490 | 492 | | | - (1) Outdoor air temperature 35°C, water temperature 12°C / 7°C (EN14511:2022) - Outdoor air temperature 35°C, water temperature 12°C/°C (EN 14511:2022) η efficiency values for heating and cooling are respectively calculated by the following formulas: $[\eta = SCOP/2,5 F(1) F(2)] e [\eta = SEER/2,5 F(1) F(2)]$. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Outdoor air temperature dry bulb °C' wet bulb 6°C, water temperature Ψ 0°C/45°C (EN 14511:2022) Ψ 1 efficiency values for heating and cooling are respectively calculated by the following formulas: $[\eta = SCOP/2,5 F(1) F(2)] e [\eta = SEER/2,5 F(1) F(2)]$. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Low temperature conditions. Seasonal energy efficiency class for LOW TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in - the range $A + + + \rightarrow D$ - Sound power level measured according to ISO 9614 EUROVENT certified data # PLI Inverter Chillers and HP with Low GWP refrigerant # DIMENSIONAL DRAWINGS 6 7 8 9 10 Heat exchanger inlet 1 " M Heat exchanger outlet 1 " M Vibration dumpers Lifting points User interface # PLE Chillers and HP with Low GWP refrigerant # Outdoor packaged unit # PLE 50 - 160 kW R-454R refrigerant compressor Heating/ Cooling # **PLUS** - » Refrigerant R454B (GWP=467) - » High seasonal efficiency values (ErP 2021 compliant) - » Electronic expansion valve as standard - » High configurability and wide availability of accessories - » Availability of standard acoustic execution or in silenced configuration - » Production of water from -10°C to 55°C - » Operation limit extension in heating mode due to low T air option - » Extremely compact dimensions (up to 38 kW/m²) PLE heat pumps and water chillers are designed for heating or cooling the water to be used in air-conditioning systems for residential, commercial, or industrial use. The use of low-GWP refrigerant ensures compliance with the limits established by the F-GAS regulation regarding gases that potentially contribute to global warming (greenhouse gases). # Air-water unit with high seasonal efficiency and low-GWP refrigerant PLE is Galletti's new range of air-cooled packaged chillers and heat pumps for outdoor installation featuring R454B refrigerant. R454B is a next generation A2L refrigerant with a GWP of only 467, one of the lowest on the market. This GWP value ensures that the PLE range complies with the gradual reduction of greenhouse gas emissions required by the F-GAS regulation, down to the stricter limits foreseen for 2030. The range consists of 10 models with cooling capacities from 50 to 160 kW, available as cooling only and reversible heat pump mode. The range's main strength is its high seasonal efficiency, which is designed to permanently reduce annual energy consumption as well as meet the minimum efficiency requirements established by ErP 2021. In order to increase the efficiency at partial loads, PLE models are provided with tandem or trio solutions (2 compressors on a single circuit) and equipped with electronic expansion valve as standard. The use of top quality components at the cutting edge of technology in the cooling, hydraulic, and electrical systems makes PLE chillers state of the art in terms of efficiency, reliability, and operating limits. In fact, the ability to produce water from -10°C to 55°C, and full load operation with external air from -12°C to 46°C. The range allows high configurability from an acoustic point of view, having a wide range of accessories designed to reduce noise emissions. The advanced control, always present in the whole range, allows a continuous monitoring of the operating parameters, advanced adjustment logics, and connectivity. ## MAIN COMPONENTS ### Very low GWP refrigerant Use of R454B refrigerant with low environmental impact. R454B is a next-generation A2L refrigerant with a GWP of only 467, one of the lowest on the market. This GWP value ensures that the PLE range complies with the gradual reduction of quotas of greenhouse refrigerants in the European market required by the F-GAS regulation, down to the stricter limits foreseen for 2030 ### **Scroll compressors** The scroll-type compressors designed to work with R454B, which can be sound insulated, include internal thermal protection of the windings and are installed on special anti-vibration supports. The scroll-type compressors are equipped with an IDV valve. The IDV intermediate delivery valve technology allows the compressor to avoid losses caused by overcompression and, consequently, the additional work the motor has to perform in partial-load operation, thus saving energy and improving seasonal and partial-load efficiency from 3% to 10%. ### Microchannel The entire Chiller range has microchannel coils as a standard feature. The large heat exchange surface, the absence of a copper-aluminum interface, and the perfect flow of air make it possible to achieve the same performance while reducing the refrigerant charge by up to 40%, with obvious benefits from an ecological point of view. Microchannel coils Galletti always feature surface treatment as a standard feature in order to provide maximum safety, even in harsh environments ### **Electronic valve** It is standard on the entire range and offers greater responsiveness during transients. The electronics also manage the synergistic operation of the compressors and the valve, thereby making it possible to vary overheating and maximize efficiency at partial loads. | CONFIGURATOR | | | | | | | | | | | | | | | | |---|------------|-------|---|---|---|---|---|---|---|---|---|----|----|----|----| | The models are completely configurable by selecting the version and the options. To the right is shown an example of configuration. | Version | Field | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | | PLE162HS0A | | Α | 1 | S | 0 | Ε | 0 | 0 | 2 | 0 | 0 | G | 0 | 1 | | |
 | | | | | | | | | | | | | | | To verify the compatibility of the options, use the selection software or the price list. ### AVAILABLE VERSIONS | Only | coolina (| versions | |------|-----------|----------| | | | | PLE..CSOA Power supply 400V-3N-50Hz PLE..CS2A Power supply 400V-3N-50Hz + circuit breaker PLE..CS4A Power supply 400V-3-50Hz PLE..CS5A Power supply 400V-3-50Hz + circuit breaker ### CONFIGURATION OPTIONS ### **Expansion valve** 1 Electronic # Water pump and accessories Absent LP pump + expansion vessel LP run and standby double pump + expansion vessel HP pump + expansion vessel HP run and standby double pump + expansion vessel LP inverter pump + expansion vessel LP run and standby double inverter pump + expansion vessel HP inverter pump + expansion vessel D HP run and standby double inverter pump + expansion vessel Water buffer tank Absent Selected Partial heat recovery Desuperheater with water pump free contact Air flow modulation Condensation control with high-head EC electronically controlled fans Condensation control by phase-cut fans Condensing control with electronic EC fans Antifreezing kit Absent Evaporator Evaporator and water pump Evaporator, water pump and water buffer tank Acoustic insulation and attenuation ### Reversible heat pump versions PLE..HSOA Power supply 400V-3N-50Hz PLE..HS2A Power supply 400V-3N-50Hz + circuit breaker Power supply 400V-3-50Hz PLE..HS5A Power supply 400V-3-50Hz + circuit breaker - $Compressor\ sound proof\ insulations\ and\ compressor\ compartment\ acoustic\ insulation$ - Refrigerant pipework accessories Absent 8 Operation limit extension low T air (Liquid separator in compressor intake + liquid ### 9 Rémote control / Serial communication Absent RS485 serial board (Carel / Modbus protocol) BACNET IP / PCOWEB serial board (advanced controller required) BACNET IP / PCOWEB + SUPERVISOR SOFTWARE (GWeb) Remote simplified user panel Remote user panel for advanced controller ### 10 Special coils / Protective treatments Copper-aluminium (standard heat pump only) Cataphoresis treatment on fins and coil carpentry Microchannel in Long Life Alloy (standard for chiller)
Microchannels coil with e-coating treatment Pre-painted fins with polyester paint ### Copper-copper Anti vibration shock mounts 11 Absent Rubber anti vibration shock mounts Spring anti vibration shock mounts ### 12 Outdoor coil trace heater Absent Selected ### **Onboard controller** 13 Advanced | ACC | ESSORIES | | | |-----|---|---|---| | Α | Outdoor finned coil heat exchanger protection filters | M | 0-10 V signal for external user pump control (on-board pump excluded) | | В | Outdoor finned coil heat exchanger protection grille | N | Compressor tandem/trio isolation valves | | C | Pair of couplings Victaulic | 0 | Night-time low-noise | | D | ON/OFF status of the compressors | Q | Temperature probe for pump shutdown on the primary circuit | | E | Remote control for step capacity limit (advanced controller required) | R | Enabling 2nd set-point / external alarm signaling via digital input | | F | Configurable digital alarm board (advanced controller required) | S | Hot-wire electronic flow switch | | G | Soft starter | T | Mains power analyzer for monitoring and reducing power consumption | | Н | Power factor capacitors | U | Unit lifting pipes | | I | Refrigerant sensors | V | Set-point modification with 4-20mA signal | | 1 | Water nines additional insulation | | | # PLE Chillers and HP with Low GWP refrigerant # WATER CHILLERS RATED TECHNICAL DATA PLE C | PLE | | | 052 | 062 | 072 | 082 | 092 | |--------------------------------------|--------|---------|-------|-------|------------|-------|-------| | Power supply | | V-ph-Hz | | | 400/3+N/50 | | | | Cooling capacity | (1)(E) | kW | 53,0 | 59,0 | 66,0 | 72,0 | 88,0 | | Total power input | (1)(E) | kW | 17,4 | 20,1 | 23,0 | 26,3 | 30,2 | | EER | (1)(E) | | 3,03 | 2,92 | 2,87 | 2,73 | 2,91 | | SEER | (2)(E) | | 4,42 | 4,23 | 4,15 | 4,12 | 4,45 | | Water flow | (1) | I/h | 9069 | 10116 | 11365 | 12318 | 15112 | | Water pressure drop | (1)(E) | kPa | 22 | 27 | 27 | 31 | 33 | | Available pressure head - LP pumps | (1) | kPa | 164 | 155 | 150 | 140 | 124 | | Available pressure head - HP pumps | (1) | kPa | 213 | 204 | 198 | 188 | 183 | | Maximum current absorption | | Α | 48,0 | 52,0 | 58,0 | 64,0 | 78,0 | | Start up current | | Α | 163 | 170 | 184 | 224 | 254 | | Startup current with soft starter | | Α | 128 | 133 | 144 | 174 | 200 | | Compressors / circuits | | | | | 2/1 | | | | Buffer tank volume | | dm³ | 125 | 125 | 125 | 125 | 190 | | Sound power level | (3)(E) | dB(A) | 80 | 81 | 81 | 81 | 84 | | Sound power level, low-noise version | (3) | dB(A) | 77 | 78 | 78 | 78 | 81 | | Weight without options | | kg | 462 | 465 | 469 | 476 | 590 | | Maximum transport weight | | kg | 520 | 523 | 529 | 536 | 682 | | PLE | | | 102 | 122 | 132 | 142 | 152 | | Power supply | | V-ph-Hz | | | 400/3+N/50 | | | | Cooling capacity | (1)(E) | kW | 97,0 | 108 | 122 | 135 | 145 | | Total power input | (1)(E) | kW | 34,3 | 39,9 | 42,2 | 49,0 | 56,1 | | EER | (1)(E) | | 2,82 | 2,72 | 2,89 | 2,74 | 2,59 | | SEER | (2)(E) | | 4,25 | 4,26 | 4,25 | 4,18 | 4,11 | | Water flow | (1) | I/h | 16625 | 18648 | 20981 | 23169 | 25009 | | Water pressure drop | (1)(E) | kPa | 39 | 35 | 43 | 44 | 50 | | Available pressure head - LP pumps | (1) | kPa | 115 | 115 | 156 | 148 | 135 | | Available pressure head - HP pumps | (1) | kPa | 173 | 174 | 177 | 170 | 157 | | Maximum current absorption | | A | 85,0 | 94,0 | 105 | 116 | 127 | | Start up current | | A | 304 | 304 | 308 | 376 | 376 | | Startup current with soft starter | | Α | 239 | 239 | 243 | 296 | 296 | | Compressors / circuits | | | | | 2/1 | | | 190 84 81 591 683 (3)(E) (3) dB(A) dB(A) kg 190 85 82 642 733 295 88 85 750 906 295 88 85 808 89 87 858 1012 Buffer tank volume Sound power level Weight without options Maximum transport weight Sound power level, low-noise version Outdoor air temperature 35°C, water temperature 12°C / 7°C (EN14511:2022) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Sound power level measured according to 1SO 9614 ### HEAT PUMPS RATED TECHNICAL DATA PLE H | PLE | | | 052 | 062 | 072 | 082 | 092 | |--|--|---|---|--|--|---|--| | Power supply | | V-ph-Hz | | | 400/3+N/50 | | | | Cooling capacity | (1)(E) | kW | 50,1 | 54,9 | 62,5 | 70,5 | 83,8 | | Total power input | (1)(E) | kW | 18,5 | 21,3 | 24,0 | 27,0 | 30,8 | | EER | (1)(E) | | 2,71 | 2,58 | 2,60 | 2,61 | 2,72 | | SEER | (2)(E) | | 4,40 | 4,21 | 4,11 | 3,93 | 4,40 | | Water flow | (1) | I/h | 8624 | 9446 | 10758 | 12140 | 14418 | | Water pressure drop | (1)(E) | kPa | 21 | 24 | 25 | 31 | 28 | | Available pressure head - LP pumps | (1) | kPa | 168 | 160 | 151 | 138 | 129 | | Available pressure head - HP pumps | (1) | kPa | 218 | 210 | 200 | 186 | 187 | | | | | | | | | | | Heating capacity | (3)(E) | kW | 59,0 | 66,0 | 75,0 | 84,0 | 99,0 | | Total power input | (3)(E) | kW | 18,3 | 20,6 | 23,5 | 26,0 | 30,7 | | COP | (3)(E) | | 3,21 | 3,20 | 3,20 | 3,24 | 3,23 | | SCOP | (2)(E) | | 3,61 | 3,66 | 3,77 | 3,90 | 3,61 | | Heating energy efficiency class | (4)(E) | | | | A+ | | | | Nater flow | (3) | I/h | 10193 | 11420 | 13026 | 14577 | 17208 | | Nater pressure drop | (3)(E) | kPa | 28 | 34 | 35 | 43 | 36 | | Available pressure head - LP pumps | (3) | kPa | 160 | 150 | 138 | 118 | 119 | | Available pressure head - HP pumps | (3) | kPa | 209 | 199 | 185 | 164 | 177 | | Maximum current absorption | | Α | 48,0 | 52,0 | 58,0 | 64,0 | 78,0 | | Start up current | | Α | 163 | 170 | 184 | 224 | 254 | | Startup current with soft starter | | A | 128 | 133 | 144 | 174 | 200 | | Compressors / circuits | | | | J | 2/1 | | J | | Buffer tank volume | | dm ³ | 125 | 125 | 125 | 125 | 190 | | Sound power level | (5)(E) | dB(A) | 80 | 81 | 81 | 81 | 84 | | Sound power level, low-noise version | (5) | dB(A) | 77 | 78 | 78 | 78 | 81 | | Weight without options | (5) | kg | 502 | 505 | 517 | 532 | 646 | | | | | | | | JJ2 | | | | | | | | | 502 | 730 | | Maximum transport weight | | kg | 560 | 563 | 577 | 592 | 739 | | Maximum transport weight | | | | | | 592
142 | 739
152 | | Maximum transport weight PLE | | | 560 | 563 | 577 | | | | Maximum transport weight PLE Power supply | (1)(E) | kg | 560 | 563 | 577
132 | | | | Maximum transport weight PLE Power supply Cooling capacity | (1)(E)
(1)(E) | kg
V-ph-Hz | 560
102 | 563 | 577
132
400/3+N/50 | 142 | 152 | | Maximum transport weight PLE Power supply Cooling capacity Total power input | | V-ph-Hz
kW | 560
102
92,5 | 563
122
107 | 132
400 / 3+N / 50
120 | 142 | 152
142 | | Maximum transport weight PLE Power supply Cooling capacity Total
power input EER | (1)(E) | V-ph-Hz
kW | 92,5
36,1 | 563
122
107
41,0 | 132
400 / 3+N / 50
120
44,8 | 142
132
49,7 | 152
142
56,3 | | Maximum transport weight Pole Power supply Cooling capacity Total power input EER SEER | (1)(E)
(1)(E) | V-ph-Hz
kW | 560
102
92,5
36,1
2,56 | 563
122
107
41,0
2,61 | 132
400/3+N/50
120
44,8
2,68 | 142
132
49,7
2,66 | 152
142
56,3
2,53 | | Power supply Cooling capacity Total power input EER SEER Water flow | (1)(E)
(1)(E)
(2)(E)
(1) | V-ph-Hz
kW
kW | 560
102
92,5
36,1
2,56
4,02 | 107
41,0
2,61
4,22 | 132
400/3+N/50
120
44,8
2,68
4,23 | 142
132
49,7
2,66
4,15 | 152
142
56,3
2,53
3,93 | | Power supply Cooling capacity Total power input EER SEER Water flow Water pressure drop | (1)(E)
(1)(E)
(2)(E) | V-ph-Hz
kW
kW | 560
102
92,5
36,1
2,56
4,02
15927 | 107
41,0
2,61
4,22
18419 | 132
400/3+N/50
120
44,8
2,68
4,23
20699 | 142
132
49,7
2,66
4,15
22745 | 152
142
56,3
2,53
3,93
24516 | | PLE Power supply Cooling capacity Fotal power input EEER SEER Water flow Water pressure drop Available pressure head - LP pumps | (1)(E)
(1)(E)
(2)(E)
(1)
(1)(E)
(1) | V-ph-Hz
kW
kW | 560
102
92,5
36,1
2,56
4,02
15927
36
116 | 107
41,0
2,61
4,22
18419
34
115 | 577 132 400 / 3+N / 50 120 44,8 2,68 4,23 20699 42 158 | 142
132
49,7
2,66
4,15
22745
38
156 | 152
142
56,3
2,53
3,93
24516
44
138 | | PLE Power supply Cooling capacity Fotal power input EEER SEER Water flow Water pressure drop Available pressure head - LP pumps Available pressure head - HP pumps | (1)(E)
(1)(E)
(2)(E)
(1)
(1)(E)
(1)
(1) | V-ph-Hz
kW
kW
I/h
kPa
kPa
kPa | 560 102 92,5 36,1 2,56 4,02 15927 36 116 175 | 107
41,0
2,61
4,22
18419
34
115 | 577 132 400 / 3+N / 50 120 44,8 2,68 4,23 20699 42 158 179 | 142
132
49,7
2,66
4,15
22745
38
156 | 152
142
56,3
2,53
3,93
24516
44
138
160 | | PLE Power supply Cooling capacity Fotal power input EER SEER Water flow Water pressure drop Available pressure head - HP pumps Heating capacity | (1)(E)
(1)(E)
(2)(E)
(1)
(1)(E)
(1)
(1)
(3)(E) | V-ph-Hz kW kW l/h kPa kPa kPa kW | 560 102 92,5 36,1 2,56 4,02 15927 36 116 175 | 107
41,0
2,61
4,22
18419
34
115
173 | 577 132 400 / 3+N / 50 120 44,8 2,68 4,23 20699 42 158 179 138 | 142
132
49,7
2,66
4,15
22745
38
156
177
157 | 152
142
56,3
2,53
3,93
24516
44
138
160
172 | | PLE Power supply Cooling capacity Total power input EER SEER Water flow Water pressure drop Available pressure head - LP pumps Heating capacity Total power input | (1)(E)
(1)(E)
(2)(E)
(1)
(1)(E)
(1)
(1)
(3)(E)
(3)(E) | V-ph-Hz
kW
kW
I/h
kPa
kPa
kPa | 560 102 92,5 36,1 2,56 4,02 15927 36 116 175 111 34,7 | 107
41,0
2,61
4,22
18419
34
115
173
125
39,1 | 577 132 400 / 3+N / 50 120 44,8 2,68 4,23 20699 42 158 179 138 43,1 | 142
132
49,7
2,66
4,15
22745
38
156
177
157
48,4 | 142
56,3
2,53
3,93
24516
44
138
160
172
53,8 | | Maximum transport weight PLE Power supply Cooling capacity Fotal power input EER SEER Water flow Water pressure drop Available pressure head - LP pumps Available pressure head - HP pumps Heating capacity Fotal power input Fot | (1)(E)
(1)(E)
(2)(E)
(1)
(1)(E)
(1)
(1)
(3)(E)
(3)(E)
(3)(E) | V-ph-Hz kW kW l/h kPa kPa kPa kW | 560 102 92,5 36,1 2,56 4,02 15927 36 116 175 111 34,7 3,20 | 107
41,0
2,61
4,22
18419
34
115
173
125
39,1
3,20 | 132
400 / 3+N / 50
120
44,8
2,68
4,23
20699
42
158
179
138
43,1
3,21 | 142
132
49,7
2,66
4,15
22745
38
156
177
157
48,4
3,24 | 142
56,3
2,53
3,93
24516
44
138
160
172
53,8
3,20 | | Maximum transport weight PLE Power supply Cooling capacity Total power input EER SEER Water flow Water pressure drop Available pressure head - LP pumps Available pressure head - HP pumps Heating capacity Total power input COP SCOP | (1)(E)
(1)(E)
(2)(E)
(1)
(1)(E)
(1)
(1)
(3)(E)
(3)(E)
(3)(E)
(2)(E) | V-ph-Hz kW kW l/h kPa kPa kPa kW | 560 102 92,5 36,1 2,56 4,02 15927 36 116 175 111 34,7 | 107
41,0
2,61
4,22
18419
34
115
173
125
39,1 | 132
400 / 3+N / 50
120
44,8
2,68
4,23
20699
42
158
179
138
43,1
3,21
3,73 | 142
132
49,7
2,66
4,15
22745
38
156
177
157
48,4 | 142
56,3
2,53
3,93
24516
44
138
160
172
53,8 | | PLE Power supply Cooling capacity Fotal power input EER SEER Water flow Water pressure drop Available pressure head - LP pumps Available pressure head - HP pumps Heating capacity Fotal power input COP SCOP Heating energy efficiency class | (1)(E)
(1)(E)
(2)(E)
(1)
(1)(E)
(1)
(1)
(3)(E)
(3)(E)
(3)(E)
(2)(E)
(4)(E) | V-ph-Hz kW kW I/h kPa kPa kPa kW | 560 102 92,5 36,1 2,56 4,02 15927 36 116 175 111 34,7 3,20 3,61 | 107
41,0
2,61
4,22
18419
34
115
173
125
39,1
3,20
3,84 | 132
400/3+N/50
120
44,8
2,68
4,23
20699
42
158
179
138
43,1
3,21
3,73
A+ | 142
132
49,7
2,66
4,15
22745
38
156
177
157
48,4
3,24
3,79 | 152
142
56,3
2,53
3,93
24516
44
138
160
172
53,8
3,20
3,73 | | PLE Power supply Cooling capacity Fotal power input EER SEER Nater flow Nater pressure drop Available pressure head - LP pumps Available pressure head - HP pumps Heating capacity Fotal power input COP Heating energy efficiency class Nater flow | (1)(E)
(1)(E)
(2)(E)
(1)
(1)
(1)
(1)
(3)(E)
(3)(E)
(3)(E)
(2)(E)
(4)(E)
(3) | V-ph-Hz kW kW I/h kPa kPa kPa kW kW | 560 102 92,5 36,1 2,56 4,02 15927 36 116 175 111 34,7 3,20 3,61 | 107
41,0
2,61
4,22
18419
34
115
173
125
39,1
3,20
3,84 | 132
400/3+N/50
120
44,8
2,68
4,23
20699
42
158
179
138
43,1
3,21
3,73
A+
23996 | 142
132
49,7
2,66
4,15
22745
38
156
177
157
48,4
3,24
3,79 | 152
142
56,3
2,53
3,93
24516
44
138
160
172
53,8
3,20
3,73 | | PLE Power supply Cooling capacity Fotal power input EER SEER Water flow Water pressure drop Available pressure head - LP pumps Available pressure head - HP pumps Heating capacity Fotal power input ECOP Heating energy efficiency class Water flow Water flow Water pressure drop | (1)(E)
(1)(E)
(2)(E)
(1)
(1)
(1)
(1)
(3)(E)
(3)(E)
(3)(E)
(2)(E)
(4)(E)
(3)
(3)(E) | V-ph-Hz kW kW I/h kPa kPa kPa kW kW | 560 102 92,5 36,1 2,56 4,02 15927 36 116 175 111 34,7 3,20 3,61 | 122
107
41,0
2,61
4,22
18419
34
115
173
125
39,1
3,20
3,84
21658
46 | 132
400/3+N/50
120
44,8
2,68
4,23
20699
42
158
179
138
43,1
3,21
3,73
A+
23996
55 | 142
132
49,7
2,66
4,15
22745
38
156
177
157
48,4
3,24
3,79
27204
51 | 152
142
56,3
2,53
3,93
24516
44
138
160
172
53,8
3,20
3,73 | | PLE Power supply Cooling capacity Total power input EER SEER Water flow Water pressure drop Available pressure head - LP pumps Heating capacity Total power input SCOP Heating energy efficiency class Water flow Water pressure drop Available pressure head - HP pumps Heating capacity Total power input Heating energy efficiency class Water flow Water pressure drop Available pressure head - LP pumps | (1)(E)
(1)(E)
(2)(E)
(1)
(1)
(1)
(1)
(3)(E)
(3)(E)
(3)(E)
(2)(E)
(4)(E)
(3)
(3)
(3)(E)
(3)(E)
(3)(E)
(3)(E)
(3)(E)
(3)(E) | V-ph-Hz kW kW I/h kPa kPa kPa kW kW | 560 102 92,5 36,1 2,56 4,02 15927 36 116 175 111 34,7 3,20 3,61 19221 51 101 | 122
107
41,0
2,61
4,22
18419
34
115
173
125
39,1
3,20
3,84
21658
46
96 | 132
400 / 3 + N / 50
120
44,8
2,68
4,23
20699
42
158
179
138
43,1
3,21
3,73
A+
23996
55
140 | 142 132 49,7 2,66 4,15 22745 38 156 177 157 48,4 3,24 3,79 27204 51 136 | 152
142
56,3
2,53
3,93
24516
44
138
160
172
53,8
3,20
3,73
29845
60
111 | | PLE Power supply Cooling capacity Fotal power input EER SEER Water flow Water pressure drop Available pressure head - LP pumps Heating capacity Fotal power input COP SCOP Heating energy efficiency class Water flow Water pressure drop Available pressure head - LP pumps Heating capacity Fotal power input COP SCOP Heating energy efficiency class Water flow Water pressure drop Available pressure head - LP pumps Available pressure head - LP pumps Available pressure head - LP pumps | (1)(E)
(1)(E)
(2)(E)
(1)
(1)
(1)
(1)
(3)(E)
(3)(E)
(3)(E)
(2)(E)
(4)(E)
(3)
(3)(E) | V-ph-Hz kW kW I/h kPa kPa kPa kW kW kW | 560 102 92,5 36,1 2,56 4,02 15927 36 116 175 111 34,7 3,20 3,61 19221 51 101 159 | 122
107
41,0
2,61
4,22
18419
34
115
173
125
39,1
3,20
3,84
21658
46
96
154 | 577 132 400 / 3 + N / 50 120 44,8 2,68 4,23 20699 42 158 179 138 43,1 3,21 3,73 A+ 23996 55 140 162 | 142 132 49,7 2,66 4,15 22745 38 156 177 157 48,4 3,24 3,79 27204 51 136 158 |
152
142
56,3
2,53
3,93
24516
44
138
160
172
53,8
3,20
3,73
29845
60
111
132 | | PLE Power supply Cooling capacity Fotal power input EER SEER Water flow Water pressure drop Available pressure head - LP pumps Heating capacity Fotal power input COP SCOP Heating energy efficiency class Water flow Water pressure drop LOP SCOP Available pressure head - LP pumps Heating energy efficiency class Water flow Water pressure drop Available pressure head - LP pumps Available pressure head - HP pumps Maximum current absorption | (1)(E)
(1)(E)
(2)(E)
(1)
(1)
(1)
(1)
(3)(E)
(3)(E)
(3)(E)
(2)(E)
(4)(E)
(3)
(3)
(3)(E)
(3)(E)
(3)(E)
(3)(E)
(3)(E)
(3)(E) | V-ph-Hz kW kW I/h kPa kPa kPa kW kW kW A I/h kPa kPa kPa kA kA kA A | 560 102 92,5 36,1 2,56 4,02 15927 36 116 175 111 34,7 3,20 3,61 19221 51 101 159 85,0 | 122
107
41,0
2,61
4,22
18419
34
115
173
125
39,1
3,20
3,84
21658
46
96
154
94,0 | 577 132 400 / 3 + N / 50 120 44,8 2,68 4,23 20699 42 158 179 138 43,1 3,21 3,73 A+ 23996 55 140 162 105 | 142 132 49,7 2,66 4,15 22745 38 156 177 157 48,4 3,24 3,79 27204 51 136 158 116 | 152
142
56,3
2,53
3,93
24516
44
138
160
172
53,8
3,20
3,73
29845
60
111
132
127 | | PLE Power supply Cooling capacity Fotal power input EER SEER Water flow Water pressure drop Available pressure head - LP pumps Heating capacity Fotal power input COP SCOP Heating energy efficiency class Water flow Water pressure head - LP pumps Available pressure head - HP pumps Heating capacity Fotal power input COP Scop Heating energy efficiency class Water pressure head - LP pumps Available pressure head - LP pumps Available pressure head - LP pumps Available pressure head - HP pumps Maximum current absorption Start up current | (1)(E)
(1)(E)
(2)(E)
(1)
(1)
(1)
(1)
(3)(E)
(3)(E)
(3)(E)
(2)(E)
(4)(E)
(3)
(3)
(3)(E)
(3)(E)
(3)(E)
(3)(E)
(3)(E)
(3)(E) | V-ph-Hz kW kW I/h kPa kPa kV kW I/h kPa kPa kPa kPa kA A | 560 102 92,5 36,1 2,56 4,02 15927 36 116 175 111 34,7 3,20 3,61 19221 51 101 159 85,0 304 | 122 107 41,0 2,61 4,22 18419 34 115 173 125 39,1 3,20 3,84 21658 46 96 154 94,0 304 | 132
400 / 3 + N / 50
120
44,8
2,68
4,23
20699
42
158
179
138
43,1
3,21
3,73
A+
23996
55
140
162
105
308 | 142 132 49,7 2,66 4,15 22745 38 156 177 157 48,4 3,24 3,79 27204 51 136 158 116 376 | 152 142 56,3 2,53 3,93 24516 44 138 160 172 53,8 3,20 3,73 29845 60 111 132 127 376 | | PLE Power supply Cooling capacity Fotal power input EER SEER Water flow Water pressure drop Available pressure head - LP pumps Heating capacity Fotal power input COP SCOP Heating energy efficiency class Water flow Water pressure drop Available pressure head - HP pumps Heating capacity Fotal power input COP SCOP Heating energy efficiency class Water flow Water pressure drop Available pressure head - LP pumps Available pressure head - LP pumps Available pressure head - LP pumps Available pressure head - HP | (1)(E)
(1)(E)
(2)(E)
(1)
(1)
(1)
(1)
(3)(E)
(3)(E)
(3)(E)
(2)(E)
(4)(E)
(3)
(3)
(3)(E)
(3)(E)
(3)(E)
(3)(E)
(3)(E)
(3)(E) | V-ph-Hz kW kW I/h kPa kPa kPa kW kW kW A I/h | 560 102 92,5 36,1 2,56 4,02 15927 36 116 175 111 34,7 3,20 3,61 19221 51 101 159 85,0 | 122
107
41,0
2,61
4,22
18419
34
115
173
125
39,1
3,20
3,84
21658
46
96
154
94,0 | 132
400 / 3+N / 50
120
44,8
2,68
4,23
20699
42
158
179
138
43,1
3,21
3,73
A+
23996
55
140
162
105
308
243 | 142 132 49,7 2,66 4,15 22745 38 156 177 157 48,4 3,24 3,79 27204 51 136 158 116 | 152
142
56,3
2,53
3,93
24516
44
138
160
172
53,8
3,20
3,73
29845
60
111
132
127 | | PLE Power supply Cooling capacity Fotal power input EER SEER Water flow Water pressure drop Available pressure head - LP pumps Heating capacity Fotal power input COP SCOP Heating energy efficiency class Water flow Water pressure head - LP pumps Available pressure head - HP pumps Heating capacity Fotal power input COP SCOP Heating energy efficiency class Water flow Water pressure drop Available pressure head - LP pumps Available pressure head - LP pumps Available pressure head - HP pumps Maximum current absorption Start up current Startup current Compressors / circuits | (1)(E)
(1)(E)
(2)(E)
(1)
(1)
(1)
(1)
(3)(E)
(3)(E)
(3)(E)
(2)(E)
(4)(E)
(3)
(3)
(3)(E)
(3)(E)
(3)(E)
(3)(E)
(3)(E)
(3)(E) | V-ph-Hz kW kW I/h kPa kPa kV kW I/h kPa kPa kA A A | 560 102 92,5 36,1 2,56 4,02 15927 36 116 175 111 34,7 3,20 3,61 19221 51 101 159 85,0 304 239 | 107 41,0 2,61 4,22 18419 34 115 173 125 39,1 3,20 3,84 21658 46 96 154 94,0 304 239 | 132
400 / 3+N / 50
120
44,8
2,68
4,23
20699
42
158
179
138
43,1
3,21
3,73
A+
23996
55
140
162
105
308
243
2/1 | 142 132 49,7 2,66 4,15 22745 38 156 177 157 48,4 3,24 3,79 27204 51 136 158 116 376 296 | 152 142 56,3 2,53 3,93 24516 44 138 160 172 53,8 3,20 3,73 29845 60 111 132 127 376 296 | | PLE Power supply Cooling capacity Fotal power input EER SEER Water flow Water pressure drop Available pressure head - LP pumps Heating capacity Fotal power input COP SCOP Heating energy efficiency class Water flow Water pressure head - LP pumps Available pressure head - HP pumps Start up current absorption Start up current Startup current with soft starter Compressors / circuits Suffer tank volume | (1)(E)
(1)(E)
(2)(E)
(1)
(1)(E)
(1)
(1)
(3)(E)
(3)(E)
(3)(E)
(2)(E)
(4)(E)
(3)
(3)
(3)
(3)
(3)
(3) | V-ph-Hz kW kW I/h kPa kPa kPa kW kW I/h kPa kPa kA A A A A A A A A A A A A A A A A A A | 560 102 92,5 36,1 2,56 4,02 15927 36 116 175 111 34,7 3,20 3,61 19221 51 101 159 85,0 304 239 | 107 41,0 2,61 4,22 18419 34 115 173 125 39,1 3,20 3,84 21658 46 96 154 94,0 304 239 | 132
400 / 3+N / 50
120
44,8
2,68
4,23
20699
42
158
179
138
43,1
3,21
3,73
A+
23996
55
140
162
105
308
243
2/1
295 | 142 132 49,7 2,66 4,15 22745 38 156 177 157 48,4 3,24 3,79 27204 51 136 158 116 376 296 | 152 142 56,3 2,53 3,93 24516 44 138 160 172 53,8 3,20 3,73 29845 60 111 132 127 376 296 | | PLE Power supply Cooling capacity Fotal power input EER SEER Nater flow Nater pressure drop Available pressure head - LP pumps Heating capacity Fotal power input COP Heating energy efficiency class Nater flow Nater pressure drop Available pressure head - HP pumps Heating capacity Fotal power input COP Heating energy efficiency class Nater flow Nater pressure drop Available pressure head - LP pumps Available pressure head - LP pumps Available pressure head - HP pumps Maximum current absorption Start up current Start up current Start up current Start up current with soft starter Compressors / circuits Suffer tank volume Sound power level | (1)(E) (1)(E) (2)(E) (1) (1) (1)(E) (1) (1) (3)(E) (3)(E) (3)(E) (2)(E) (4)(E) (3) (3) (3) (3) (5) (5)(E) | V-ph-Hz kW kW I/h kPa kPa kPa kW kW I/h kPa kPa kA A A A A A A A A A A A A A A A A A A | 560 102 92,5 36,1 2,56 4,02 15927 36 116 175 111 34,7 3,20 3,61 19221 51 101 159 85,0 304 239 | 107 41,0 2,61 4,22 18419 34 115 173 125 39,1 3,20 3,84 21658 46 96 154 94,0 304 239 | 132
400/3+N/50
120
44,8
2,68
4,23
20699
42
158
179
138
43,1
3,21
3,73
A+
23996
55
140
162
105
308
243
2/1
295
88 | 142 132 49,7 2,66 4,15 22745 38 156 177 157 48,4 3,24 3,79 27204 51 136 158 116 376 296 | 152 142 56,3 2,53 3,93 24516 44 138 160 172 53,8 3,20 3,73 29845 60 111 132 127 376 296 | | PLE Power supply Cooling capacity Fotal power input EER SEER Water flow Water pressure drop Available pressure head - LP pumps Heating capacity Fotal power input COP SCOP Heating energy efficiency class Water flow Water pressure head - LP pumps Heating capacity Fotal power input COP SCOP SCOP SCOP STATE DE SEER SAvailable pressure head - LP pumps Available pressure head - LP pumps Start up current with soft starter Compressors / circuits Buffer tank volume Sound power level Sound power level, low-noise version | (1)(E)
(1)(E)
(2)(E)
(1)
(1)(E)
(1)
(1)
(3)(E)
(3)(E)
(3)(E)
(2)(E)
(4)(E)
(3)
(3)
(3)
(3)
(3)
(3) | V-ph-Hz kW kW I/h kPa kPa kPa kW kW I/h kPa kPa kA A A A A A A A A A A A A A A A A A A | 560 102 92,5 36,1 2,56 4,02 15927 36 116 175 111 34,7 3,20 3,61 19221 51 101 159 85,0 304 239 190 84 81 | 107 41,0 2,61 4,22 18419 34 115 173 125 39,1 3,20 3,84 21658 46 96 154 94,0 304 239 | 132
400/3+N/50
120
44,8
2,68
4,23
20699
42
158
179
138
43,1
3,21
3,73
A+
23996
55
140
162
105
308
243
2/1
295
88
88 | 142 132 49,7 2,66 4,15 22745 38 156 177 157 48,4 3,24 3,79 27204 51 136 158 116 376 296 295 88 85 | 142
56,3
2,53
3,93
24516
44
138
160
172
53,8
3,20
3,73
29845
60
111
132
127
376
296
295
89
87 | | <u> </u> | (1)(E) (1)(E) (2)(E) (1) (1) (1)(E) (1) (1) (3)(E) (3)(E) (3)(E) (2)(E) (4)(E) (3) (3) (3) (3) (5) (5)(E) | V-ph-Hz kW kW I/h kPa kPa kPa kW kW I/h kPa kPa kA A A A A A A A A A A A A A A A A A A | 560 102 92,5 36,1 2,56 4,02 15927 36 116 175 111 34,7 3,20 3,61 19221 51 101 159 85,0 304 239 | 107 41,0 2,61 4,22 18419 34 115 173 125 39,1 3,20 3,84 21658 46 96 154 94,0 304 239 | 132
400/3+N/50
120
44,8
2,68
4,23
20699
42
158
179
138
43,1
3,21
3,73
A+
23996
55
140
162
105
308
243
2/1
295
88 | 142 132 49,7 2,66 4,15 22745 38 156 177 157 48,4 3,24 3,79 27204 51
136 158 116 376 296 | 152 142 56,3 2,53 3,93 24516 44 138 160 172 53,8 3,20 3,73 29845 60 111 132 127 376 296 | Outdoor air temperature 35°C, water temperature 12°C / 7°C (EN14511:2022) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Outdoor air temperature dry bulb 7°C / wet bulb 6°C / water temperature 40°C / 45°C (EN14511:2022) Seasonal energy efficiency class for LOW TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++ → D] (5) Sound power level measured according to ISO 9614 (E) EUROVENT certified data 5 Heat exchanger outlet 1" 1/4 F # PLE Chillers and HP with Low GWP refrigerant ### DIMENSIONAL DRAWINGS ### DIMENSIONAL DRAWINGS 10 Outlet safety valve 1" 1/4 NPT # Air heat pumps with wide working range EvitecH # Outdoor packaged unit # **EvitecH 50 - 180 kW** heating mode Refrigerant t Heating Cooling # PLUS - » Class A in heat pump operating mode - » Production of hot water up to 65°C - » Operation at full load with external air temperatures down to -20 °C - » High efficiency under part load conditions - » Possibility to configure low-noise versions - » Counterflow solutions in every operating mode - » - # Reliability and efficiency in every climatic condition EvitecH is Galletti's new high efficiency multiscroll units equipped with R410A steam injection compressor. The range consists of 10 air-water models available as chiller and heat pump, with cooling capacities from 50 to 180 kW. The main strongpoint of this series is the large operating field, both in terms of maximum hot water temperature (65°C with -11°C of external air temperature) and minimum air temperature at which the continuous operation is allowed (-20°C) The range allows high configurability from an acoustic point of view, having a wide range of accessories designed to reduce noise emissions. The advanced control, always present in the whole range, allows a continuous monitoring of the operating parameters, advanced adjustment logics, and connectivity. The modular structure with V configuration condensing coils is designed to optimize air-side heat exchange, to ensure structural strength with a reduced footprint, and to maintain maximum accessibility to the basic components. In addition to high efficiency in terms of nominal conditions (Eurovent A-class), in order to increase the efficiency at partial loads, the whole range consists of tandem solutions (2 compressors on a single refrigerant circuit). EvitecH heat pumps and are designed for heating or cooling the water to be used in air-conditioning systems for residential, commercial or industrial use. The execution with injection steam compressors (EvitecH) guarantees the production of hot water at high temperatures even in very hard outdoor conditions (up to -20°C). For detailed informations regarding the operating limits of the unit, refer to the product technical documentation. ### MAIN COMPONENTS #### Structure The range is designed modularly, replicating the optimized structure of V configuration condensing coils and fans. Its design ensures stability, sturdiness even during the most critical phases (such as transportation), and maximum accessibility to components in every unit. #### Upwind EvitecH is designed with an innovative technology which allows the refrigerant to get into the battery from the same direction when the cycle is inverted, with a constant counter-current exchange with air. This advanced technology considerably reduces the risk of ice generation on the finned heat exchangers. #### Scroll compressors with vapour injection The range consists of single and dual-circuit models in order to offer maximum redundancy. The distribution of load in multiple power steps and the use of tandem solutions (2 compressors on a single circuit) ensures maximum efficiency at partial loads and therefore greatly increases seasonal efficiency. Intercooled compression with steam injection allows a better control of the end-compression temperature, keeping it within the limits imposed by the compressor envelope, even in the most unfavorable working conditions (low evaporation pressures and high compression pressures), this results in one of the largest operating field in the market. ### 3-way valve This is a smart kit able to convert EvitecH heat pumps in multi-function units in order to fulfill every necessity of the hydraulic air-conditioning plant. It allows domestic hot water priority production thanks to Galletti thermal accumulators of the TP or TN series. The switching of the valve is managed by the onboard microprocessor control of the unit. | CONFIGURATOR | | | | | | | | | | | | | | | | |---|------------|-------|---|---|---|---|---|---|---|---|---|----|----|----|----| | The models are completely configurable by selecting the version and | Version | Field | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | the options. To the right is shown an example of configuration. | EVI082HS0A | | Α | 1 | S | 0 | C | 0 | 2 | М | 0 | Р | 0 | 0 | 2 | To verify the compatibility of the options, use the selection software or the price list. #### **AVAILABLE VERSIONS** #### Reversible heat pump versions Power supply 400V-3N-50Hz EVI..HSOA EVI..HS4A Power supply 400V-3-50Hz + transformer EVI..HS2A Power supply 400V-3N-50H + circuit breaker #### CONFIGURATION OPTIONS - **Expansion valve** 1 - 2 Water pump and accessories - Absent - LP pump + expansion vessel - LP run and standby double pump + expansion vessel - HP pump + expansion vessel - HP run and standby double pump + expansion vessel - LP inverter pump + expansion vessel LP run and standby double inverter pump + expansion vessel - HP inverter pump + expansion vessel - HP run and standby double inverter pump + expansion vessel - Water buffer tank - Absent - Selected - 4 Partial heat recovery - Absent 3 - Desuperheater with water pump free contact - Air flow modulation - Condensation control by phase-cut fans - Condensation control performed by EC fans **Antifreezing kit** - 0 Absent - Plate exchanger - Plate exchanger and water pump - Plate exchanger, water pump and inertial tank - Acoustic insulation and attenuation - Compressor sound blanket and compressor compartment sound proofing - Fans noise reduction (AXITOP) - Fans noise reduction (AXITOP) + compressor sound blanket + compartment acoustic - 8 Refrigerant pipework accessories - 0 Absent - Refrigerant pressure gauges M - Remote control / Serial communication - Absent - RS485 serial board (Carel / Modbus protocol) - BACNET IP / PCOWEB serial board (advanced controller required) BACNET MS/TP / PCONET serial board (advanced controller required) R - BACNET IP / PCOWEB serial board + supervision software Gweb (advanced controller required) - Remote simplified user panel - Touch screen remote user panel - Remote user panel for advanced controller - 10 Special coils / Protective treatments - Standard - Cataphoresis treatment on fins and coil carpentry - Hydrophilic - Pre-painted fins with polyester paint - Copper-copper 11 Anti vibration shock mounts - - Absent Rubber anti vibration shock mounts - Μ Spring anti vibration shock mounts - Coil protection grill 12 - Outdoor finned coil heat exchanger protection filters - G Selected - 13 Onboard controller - Advanced - Advanced + touchscreen user panel + USB | ACC | CESSORIES | | | |-----|---|---|---| | Α | 3 way valve for DHW production (water tank not allowed) | G | Soft starter | | В | Low temperature | Н | Power factor capacitors | | C | Pair of couplings Victaulic | I | Filter regulating kit | | D | ON/OFF status of the compressors | М | 0-10 V signal for external user pump control (on-board pump excluded) | | E | Remote control for step capacity limit (advanced controller required) | N | Compressor tandem/trio isolation valves | | F | Configurable digital alarm board (advanced controller required) | 0 | Anti-intrusion grille | # Air heat pumps with wide working range EvitecH ### EVITECH HEAT PUMPS RATED TECHNICAL DATA | EvitecH | | | 052 | 062 | 072 | 082 | 092 | |---|--------|-----------------|-----------|----------|---------------|-------|-------| | Power supply | | V-ph-Hz | | • | 400 - 3N - 50 | | | | Cooling capacity | (1)(E) | kW | 50,5 | 60,8 | 71,3 | 80,2 | 90,4 | | Total power input | (1)(E) | kW | 17,9 | 21,3 | 24,1 | 27,0 | 31,2 | | EER | (1)(E) | | 2,82 | 2,85 | 2,96 | 2,97 | 2,90 | | SEER | (2)(E) | | 3,75 | 3,81 | 3,72 | 3,74 | 3,81 | | Water flow | (1) | I/h | 8682 | 10469 | 12272 | 13806 | 15552 | | Water pressure drop | (1)(E) | kPa | 21 | 30 | 29 | 37 | 26 | | Available pressure head - LP pumps | (1) | kPa | 167 | 150 | 147 | 188 | 183 | | Heating capacity | (3)(E) | kW | 59,7 | 70,3 | 82,9 | 92,1 | 105 | | Total power input | (3)(E) | kW | 18,1 | 21,1 | 25,5 | 27,9 | 31,4 | | COP | (3)(E) | | 3,30 | 3,33 | 3,26 | 3,31 | 3,33 | | SCOP | (2)(E) | | 2,85 2,92 | | 2,85 | 2,90 | 2,98 | | Heating energy efficiency class | (4) | | | | A+ | | | | SCOP | (2)(E) | | 3,70 | 3,74 | 3,54 | 3,65 | 3,75 | | Heating energy efficiency class | (5) | | | | A+ | | | | Water flow | (3) | I/h | 10352 | 12179 | 14365 | 15959 | 18113 | | Water pressure drop | (3)(E) | kPa | 30 | 41 | 40 | 50 | 36 | | Available pressure head - LP pumps | (3) | kPa | 150 | 128 | 123 | 156 | 148 | | Maximum current absorption | | Α | 55,0 | 65,0 | 73,0 | 74,0 | 83,0 | | Start up current | | Α | 152 | 179 | 214 | 215 | 203 | | Startup
current with soft starter | | Α | 111 | 130 | 153 | 154 | 144 | | Compressors / circuits | | | | <u>'</u> | 2/1 | | | | Expansion vessel volume | | dm³ | 8 | 8 | 18 | 18 | 18 | | Buffer tank volume | | dm ³ | 125 | 125 | 320 | 320 | 320 | | Sound power level | (6)(E) | dB(A) | 82 | 82 | 83 | 83 | 83 | | Transport weight unit with pump and tank | | kg | 793 | 802 | 1081 | 1082 | 1095 | | Operating weight unit with pump and full tank | | kg | 895 | 904 | 1408 | 1412 | 1422 | ⁽¹⁾ Outdoor air temperature 35°C, water temperature 12°C / 7°C (EN14511:2022) ⁽¹⁾ Outdoor air temperature 32 C, water temperature 12 C / / C (EN14511:202Z) (2) pefficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. (3) Outdoor air temperature dry bulb 6°C, water temperature 40°C / 45°C (EN14511:2022) (4) Seasonal energy efficiency class for MEDIUM TEMPERATURE room heating under AVERAGE climatic conditions [EUROP EAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++→D] (5) Seasonal energy efficiency class for MEDIUM TEMPERATURE room heating under AVERAGE climatic conditions (EUROP EAN REGULATION No 811/2013. The energy efficiency class for MEDIUM TEMPERATURE room heating under AVERAGE climatic conditions (EUROPE NO 811/2013). Seasonal energy efficiency class for LOW TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++ → D] (6) Sound power level measured according to ISO 9614 (E) EUROVENT certified data ### EVITECH HEAT PUMPS RATED TECHNICAL DATA | EvitecH | | | 104 | 124 | 154 | 174 | 184 | |---|--------|-----------------|-------|-------|---------------|-------|-------| | Power supply | | V-ph-Hz | | | 400 - 3N - 50 | | | | Cooling capacity | (1)(E) | kW | 104 | 124 | 150 | 172 | 182 | | Total power input | (1)(E) | kW | 36,6 | 44,8 | 51,2 | 58,2 | 62,7 | | EER | (1)(E) | | 2,85 | 2,77 | 2,94 | 2,95 | 2,90 | | SEER | (2)(E) | | 3,78 | 3,88 | 4,02 | 4,23 | 4,20 | | Water flow | (1) | l/h | 17903 | 21369 | 25873 | 29515 | 31259 | | Water pressure drop | (1)(E) | kPa | 32 | 23 | 33 | 24 | 27 | | Available pressure head - LP pumps | (1) | kPa | 136 | 137 | 162 | 165 | 159 | | Heating capacity | (3)(E) | kW | 118 | 139 | 173 | 194 | 206 | | Total power input | (3)(E) | kW | 34,6 | 40,8 | 51,7 | 56,6 | 60,4 | | COP | (3)(E) | | 3,42 | 3,40 | 3,34 | 3,43 | 3,41 | | SCOP | (2)(E) | | 2,94 | 2,96 | 3,00 | 3,11 | 3,14 | | Heating energy efficiency class | (4) | | | | A+ | | | | SCOP | (2)(E) | | 3,73 | 3,80 | 3,88 | 4,05 | 4,08 | | Heating energy efficiency class | (5) | | A+ | A+ | A++ | A++ | A++ | | Water flow | (3) | l/h | 20509 | 24067 | 29949 | 33643 | 35781 | | Water pressure drop | (3)(E) | kPa | 42 | 29 | 44 | 31 | 35 | | Available pressure head - LP pumps | (3) | kPa | 117 | 119 | 142 | 148 | 138 | | Maximum current absorption | | Α | 92,0 | 112 | 147 | 156 | 165 | | Start up current | | Α | 189 | 226 | 288 | 297 | 296 | | Startup current with soft starter | | Α | 148 | 177 | 227 | 237 | 237 | | Compressors / circuits | | | | | 4/2 | | | | Expansion vessel volume | | dm ³ | 18 | 18 | 24 | 24 | 24 | | Buffer tank volume | | dm ³ | 320 | 320 | 450 | 450 | 450 | | Sound power level | (6)(E) | dB(A) | 84 | 87 | 87 | 87 | 87 | | Transport weight unit with pump and tank | | kg | 1249 | 1265 | 2064 | 2102 | 2120 | | Operating weight unit with pump and full tank | | kg | 1576 | 1592 | 2491 | 2529 | 2547 | Outdoor air temperature 35°C, water temperature 12°C/7°C (EN14511:2022) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Outdoor air temperature dry bulb 7°C / wet bulb 6°C, water temperature 40°C / 45°C (EN14511:2022) Seasonal energy efficiency class for MEDIUM TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the means A to the seasonal energy efficiency class of this product is Seasonal energy efficiency class for LOW TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range $A+++\rightarrow D]$ Sound power level measured according to ISO 9614 EUROVENT certified data # Air heat pumps with wide working range EvitecH # DIMENSIONAL DRAWINGS # DIMENSIONAL DRAWINGS # **EVITECH 72 - 82 - 92** 2461 1028 1455 4 4B 1203 1545 4 4A 1538 2250 1.5 m 1.5 m 1.5 m ### LEGEND | 1 | Water drainage 1/2" female | | |---|-------------------------------|--| | 2 | Water inlet Victaulic 2 1/2" | | | 3 | Water outlet Victaulic 2 1/2" | | | 4 | Vibration dumpers | | # Air heat pumps with wide working range EvitecH # DIMENSIONAL DRAWINGS # DIMENSIONAL DRAWINGS ### LEGEND | Water drainage 1/2" female | |---| | Water inlet Victaulic 4" | | Water outlet Victaulic 4" | | Vibration dumpers | | Electric control board | | Victaulic adapter from 4" to 3" to be mounted on-site | | Water outlet, evaporator only | | | # **V-IPER Chillers and heat pumps** # Outdoor packaged unit # V-IPER 50 - 380 kW compressor Cooling only Cooling # Technology and efficiency in Galletti new solution V-IPER is Galletti's new high efficiency range, featuring Galletti's most advanced technology in the R410A multiscroll units used in HVAC. The range consists of 20 air-water models available as chiller and heat pump, with cooling capacities from 50 The range's main strongpoint is its high efficiency, not only as time efficiency (Class A Eurovent in chiller and heat pump mode) but especially as seasonal efficiency, aiming to permanently reduce annual energy consumption. In order to increase the efficiency at partial loads, much of the range is comprised of trio solutions (3 compressors on a circuit); furthermore, V-IPER employs components and adjustment logic that make it possible to manage the water-side flow rate modulation. The range allows high configurability from an acoustic point of view, having a wide range of accessories designed to reduce noise emissions. The advanced control, always present in the whole range, allows a continuous monitoring of the operating parameters, advanced adjustment logics, and connectivity. The modular structure with V configuration condensing coils is designed to optimize air-side heat exchange, to ensure structural strength with a reduced footprint, and to maintain maximum accessibility to the basic components. # **PLUS** - » Class A in chiller and heat pump operating mode - » High efficiency under part load conditions - » Intelligent modulation of the water flow rate - » Extended operating range - » Possibility to configure low-noise versions - » Counterflow solutions in every operating mode V-IPER heat pumps and water chillers are designed for heating or cooling the water to be used in air-conditioning systems for residential, commercial or industrial use. Its high efficiency ensures a considerable reduction in consumption and the ability to operate in various weather conditions. | CONFIGURATOR | | | | | | | | | | | | | | | | |---|---|-------|---|---|---|---|---|---|---|---|---|----|----|----|----| | The models are completely configurable by selecting the version and the options. To the right is shown an example of configuration. | Version | Field | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | | VPR386CS0A | | Α | 1 | S | 0 | C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | | To verify the compatibility of the options, use the selection software or the price list. | | | | | | | | | | | | | | | | Only co
VPRC
VPRC | SS2A | Power supply 400V-3N-50Hz + circuit breaker
Power supply 400V-3N-50Hz + circuit breaker + transformer | Reversible
VPRHSO <i>P</i>
VPRHS2 <i>P</i> | 1117 | |--|--|---|---|--| | 1 A 2 0 1 2 3 3 4 A A B C D 3 0 | Water pump and
Absent
LP pump + expans
LP run and standby
HP pump + expans
HP run and standby
LP inverter pump -
LP run and standby
HP inverter pump - | accessories ion vessel y double pump + expansion vessel sion vessel y double pump + expansion vessel e expansion vessel y
double inverter pump + expansion vessel + expansion vessel y double inverter pump + expansion vessel y double inverter pump + expansion vessel | 3
8
0
M
9
0
2
2
8
F
G
S
X | Fans noise reduction (AXITOP) + compressor sound blanket + compartment acoustic insulation Refrigerant pipework accessories Absent Refrigerant pressure gauges Remote control / Serial communication Absent RS485 serial board (Carel / Modbus protocol) BACNET IP / PCOWEB serial board (advanced controller required) BACNET IP / PCOWEB + SUPERVISOR SOFTWARE (GWeb) Remote simplified user panel Remote simplified user panel Remote simplified user panel Remote simplified user panel | | 5
4
0
D
5
C
E
6
0
E | Air flow modulat Condensation conti Condensation conti Antifreezing kit Absent Evaporator Evaporator and wai | h water pump free contact
ion
rol by phase-cut fans
rol performed by EC fans | 0
C
I
M
R
11
0
G
M
12 | Standard Cataphoresis treatment on fins and coil carpentry Hydrophilic Microchannel outdoor heat exchanger with epoxy coat and anti UV ray protection treatment (standard for chiller) Copper-copper Anti vibration shock mounts Absent Rubber anti vibration shock mounts Spring anti vibration shock mounts Compressors options | | 7 0 1 2 | Evaporator, water pump and water buffer tank Acoustic insulation and attenuation Absent Compressor compartment acoustic insulation Fans noise reduction (AXITOP) | 0
1
13 | Absent Crankcase compressor heater (CHILLER), outdoor coil trace heater (HP) Onboard controller Advanced | |----------------|--|---------------------|--| | AC | CESSORIES | | | | Α | Outdoor finned coil heat exchanger protection grille | G | Soft starter | | ACCES | SURIES | | | |-------|---|---|---| | A | Outdoor finned coil heat exchanger protection grille | G | Soft starter | | В | Not in use | Н | Power factor capacitors | | C | Pair of couplings Victaulic | I | Filter regulating kit | | D | ON/OFF status of the compressors | L | Water pipes additional insulation | | E | Remote control for step capacity limit (advanced controller required) | M | 0-10 V signal for external user pump control (on-board pump excluded) | | F | Configurable digital alarm board (advanced controller required) | N | Compressor tandem/trio isolation valves | | | | | | ### EXTENDED OPERATING RANGE The generous size of the condensing coils combined with various technological solutions allows V-IPER to operate in a wide range of climatic conditions. More specifically: # V-IPER Chillers and heat pumps ### MAIN COMPONENTS #### **Structure** The range is designed modularly, replicating the optimized structure of V configuration condensing coils and fans. Its design ensures stability, sturdiness even during the most critical phases (such as transportation), and maximum accessibility to components in every V-IPER unit. #### **Electronic valve** Supplied as a standard feature, it allows optimization of operation and reduction of power consumption as a result of faster transients. #### Low noise execution The units can be supplied in a low-noise version, with noise-canceling headsets, acoustical enclosure for the compressors, and Axitop diffusors on the axial fans. This configuration, combined with the night attenuation function, provides a large reduction in the sound power level. #### **Scroll compressors** The range consists of mono- and dual-circuit models in order to offer maximum redundancy. The ability to distribute the load in multiple power steps (up to 6) and the use of trio solutions (3 compressors on a single circuit) ensures maximum efficiency at partial loads and, therefore, greatly increases seasonal efficiency. #### Upwind V-IPER implements a novel technology that allows, when the cycle reverses, to maintain the same direction of flow of the coolant through the condensing coils and to maintain air heat exchange that is always in counterflow. This advanced technology makes it possible to consistently reduce the risk of frost formation on the condensing coils. At the same time, UPWIND ensures optimization of heat exchange during both evaporation and condensing, allowing the Galletti heat pumps to be categorized as Class A (high efficiency) for both heating and cooling. #### Microchannel The entire chiller range features microchannel condensing coils as a standard feature. The large exchange surface, the lack of copper-aluminum interface, and the perfect passage of air makes it possible to achieve the same performance while reducing the refrigerant charge by up to 40%, with obvious benefits from an ecological point of view. The Galletti microchannel condensing coils always have a standard epoxy and UV dual surface treatment that provide 2400 hours of resistance under salt spray test conditions, to offer maximum safety even in aggressive environments. ### **FUNCTIONS** #### Variable water flow The advanced controller allows the management of the variable flow on the primary circuit, thus ensuring an increase in cooling cycle efficiency, reduced pumping costs, and an overall increase in seasonal energy efficiency. The plate heat exchanger has an internal configuration especially designed to operate with modulation of flow rate up to 30% of nominal flow. ### **Overheating dynamic management** The advanced control, a standard feature of V-IPER, synergistically manages the components in order to achieve maximum efficiency under all load conditions. In particular, when the cooling capacity is reduced, switching off the compressors will modify the superheating setting, thus increasing the efficiency of the cooling cycle. ### **Economy - low noise function** This feature allows, on the basis of time periods or clean contact, a reduction in the maximum speed of the fans and the compressors that can be activated. This is especially useful during the night phase, when the required power is much lower and the unit can operate in low-impact conditions, thereby reducing the noise level in a sensitive time period. ### Charge monitoring Through continuous monitoring of the cooling cycle's characteristic parameters, V-IPER will detect a possible reduction in the amount of refrigerant and promptly report this situation to prevent more serious problems and protect the main components. # Primary heat pump management In case of a decoupled circuit, it is possible, via remote sensor, to switch off the primary circuit's pumps, when permitted, due to low thermal load. In this manner a further reduction in pumping costs is achieved. #### **CDS - Continuosly Data Storage** This feature makes it possible to continuously store the characteristic operating parameters of the unit and the system in the control microprocessor. This is achieved through the availability of additional memory, which is provided as a standard feature on the controls of the whole V-IPER range. # **V-IPER Chillers and heat pumps** # V-IPER C WATER CHILLERS RATED TECHNICAL DATA | V-IPER C | | | 052 | 062 | 072 | 082 | 092 | 112 | 114 | |---|--------|---------|-------|-------|-------|---------------|-------|-------|-------| | Power supply | | V-ph-Hz | | | | 400 - 3N - 50 | | | | | Cooling capacity | (1)(E) | kW | 51,6 | 65,4 | 73,8 | 83,9 | 97,4 | 109 | 103 | | Total power input | (1)(E) | kW | 16,0 | 20,2 | 22,8 | 26,2 | 30,4 | 34,6 | 32,3 | | EER | (1)(E) | | 3,23 | 3,23 | 3,24 | 3,21 | 3,20 | 3,17 | 3,17 | | SEER | (2)(E) | | 4,44 | 4,50 | 4,19 | 4,31 | 4,35 | 4,41 | 4,13 | | Water flow | (1) | l/h | 8876 | 11265 | 12714 | 14441 | 16763 | 18826 | 17652 | | Water pressure drop | (1)(E) | kPa | 37 | 45 | 47 | 41 | 31 | 29 | 31 | | Available pressure head - LP pumps | (1) | kPa | 158 | 149 | 192 | 186 | 181 | 146 | 145 | | Maximum current absorption | | Α | 40,0 | 50,0 | 59,0 | 68,0 | 74,0 | 81,0 | 79,0 | | Start up current | | Α | 138 | 194 | 203 | 212 | 218 | 269 | 178 | | Startup current with soft starter | | Α | 97 | 134 | 142 | 151 | 157 | 190 | 137 | | Compressors / circuits | | | 2/1 | 2/1 | 2/1 | 2/1 | 2/1 | 2/1 | 4/2 | | Expansion vessel volume | | dm³ | 18 | 18 | 18 | 18 | 18 | 18 | 18 | | Buffer tank volume | | dm³ | 250 | 250 | 350 | 350 | 350 | 350 | 350 | | Sound power level | (3)(E) | dB(A) | 80 | 84 | 83 | 83 | 87 | 88 | 87 | | Transport weight unit with pump and tank | | kg | 813 | 823 | 875 | 888 | 968 | 1048 | 1866 | | Operating weight unit with pump and full tank | | kg | 1163 | 1173 | 1225 | 1238 | 1318 | 1398 | 2316 | | V-IPER C | | | 133 | 134 | 164 | 173 | 174 | 204 | 213 | | Power supply | | V-ph-Hz | | | | 400 - 3N - 50 | | | | | Cooling capacity | (1)(E) | kW | 126 | 131 | 156 | 166 | 171 | 195 | 204 | | Total power input | (1)(E) | kW | 40,2 | 42,2 | 47,7 | 50,8 | 52,0 | 58,7 | 63,4 | | EER | (1)(E) | | 3,12 | 3,11 | 3,27 | 3,27 | 3,29 | 3,31 | 3,21 | | SEER | (2)(E) | | 4,51 | 4,52 | 4,56 | 4,30 | 4,82 | 4,81 | 4,31 | | Water flow | (1) | l/h | 21586 | 22602 | 26853 | 28574 | 29405 | 33465 | 35022 | | Water pressure drop | (1)(E) | kPa | 24 | 24 | 36 | 31 | 24 | 29 | 34 | | Available pressure head - LP pumps | (1) | kPa | 144 | 143 | 161 | 164 | 169 | 159 | 151 | | Maximum current absorption | | Α | 98,0 | 101 | 125 | 125 | 136 | 148 | 149 | | Start up current | | Α | 242 | 245 | 269 | 313 | 280 | 337 | 377 | | Startup current with soft starter | | Α | 181 | 184 | 208 | 235 | 219 | 258 | 281 | | Compressors / circuits | | | 3/1 | 4/2 | 4/2 | 3/1 | 4/2 | 4/2 | 3/1 | | Expansion vessel volume | | dm³ |
18 | 18 | 24 | 24 | 24 | 24 | 24 | dm^3 dB(A) kg kg (3)(E) Transport weight unit with pump and tank Operating weight unit with pump and full tank Buffer tank volume Sound power level Outdoor air temperature 35°C, water temperature 12°C / 7°C (EN14511:2022) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Sound power level measured according to ISO 9614 EUROVENT certified data # V-IPER C WATER CHILLERS RATED TECHNICAL DATA | V-IPER C | | | 226 | 256 | 276 | 306 | 336 | 386 | |---|--------|---------|-------|-------|-------|---------|-------|-------| | Power supply | | V-ph-Hz | | | 400 - | 3N - 50 | | | | Cooling capacity | (1)(E) | kW | 213 | 251 | 270 | 291 | 330 | 370 | | Total power input | (1)(E) | kW | 66,4 | 80,4 | 84,6 | 89,2 | 104 | 115 | | EER | (1)(E) | | 3,21 | 3,12 | 3,18 | 3,27 | 3,18 | 3,20 | | SEER | (2)(E) | | 4,59 | 4,78 | 4,53 | 4,49 | 4,58 | 4,59 | | Water flow | (1) | l/h | 36660 | 43139 | 46339 | 50085 | 56732 | 63585 | | Water pressure drop | (1)(E) | kPa | 27 | 31 | 32 | 37 | 41 | 45 | | Available pressure head - LP pumps | (1) | kPa | 155 | 144 | 181 | 171 | 157 | 165 | | Maximum current absorption | | Α | 162 | 195 | 206 | 222 | 247 | 274 | | Start up current | | Α | 278 | 339 | 395 | 411 | 474 | 502 | | Startup current with soft starter | | Α | 229 | 278 | 316 | 332 | 379 | 407 | | Compressors / circuits | | | | | 6 | /2 | | | | Expansion vessel volume | | dm³ | 24 | 24 | 24 | 24 | 24 | 24 | | Buffer tank volume | | dm³ | 450 | 450 | 750 | 750 | 750 | 750 | | Sound power level | (3)(E) | dB(A) | 90 | 90 | 90 | 92 | 93 | 93 | | Transport weight unit with pump and tank | | kg | 1903 | 1916 | 2634 | 2640 | 2714 | 3831 | | Operating weight unit with pump and full tank | | kg | 2353 | 2366 | 3384 | 3390 | 3464 | 4581 | Outdoor air temperature 35°C, water temperature 12°C / 7°C (EN14511:2022) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Sound power level measured according to ISO 9614 EUROVENT certified data # **V-IPER Chillers and heat pumps** # V-IPER H HEAT PUMPS RATED TECHNICAL DATA | V-IPER H | | | 052 | 062 | 072 | 082 | 092 | 112 | 114 | |--|---|--|--|--|--|---|---|--|--| | Power supply | | V-ph-Hz | | | | 400 - 3N - 50 | | | | | Cooling capacity | (1)(E) | kW | 52,0 | 65,4 | 72,7 | 84,5 | 96,2 | 108 | 103 | | Total power input | (1)(E) | kW | 16,2 | 20,8 | 22,9 | 26,6 | 30,1 | 34,3 | 33,2 | | EER | (1)(E) | | 3,21 | 3,15 | 3,17 | 3,18 | 3,20 | 3,16 | 3,12 | | SEER | (2)(E) | | 4,31 | 4,42 | 4,05 | 4,23 | 4,27 | 4,36 | 4,18 | | Water flow | (1) | I/h | 8960 | 11265 | 12517 | 14542 | 16548 | 18636 | 17784 | | Water pressure drop | (1)(E) | kPa | 38 | 45 | 45 | 41 | 30 | 28 | 32 | | Available pressure head - LP pumps | (1) | kPa | 153 | 141 | 190 | 182 | 177 | 143 | 141 | | Heating capacity | (3)(E) | kW | 54,2 | 68,2 | 77,8 | 87,6 | 99,6 | 111 | 107 | | Total power input | (3)(E) | kW | 16,4 | 20,2 | 23,8 | 26,8 | 30,0 | 33,4 | 32,8 | | COP | (3)(E) | | 3,31 | 3,38 | 3,27 | 3,27 | 3,32 | 3,30 | 3,26 | | SCOP | (2)(E) | | 3,88 | 3,95 | 3,60 | 3,72 | 3,82 | 3,87 | 3,96 | | Heating energy efficiency class | (4)(E) | | A++ | A++ | A+ | A+ | A++ | A++ | A++ | | Nater flow | (3) | I/h | 9401 | 11815 | 13469 | 15187 | 17272 | 19163 | 1850 | | Water pressure drop | (3)(E) | kPa | 41 | 50 | 52 | 45 | 32 | 30 | 35 | | Available pressure head - LP pumps | (3) | kPa | 140 | 121 | 169 | 160 | 151 | 130 | 127 | | Maximum current absorption | | A | 40,0 | 50,0 | 59,0 | 68,0 | 74,0 | 81,0 | 79,0 | | Start up current | | A | 138 | 194 | 203 | 212 | 218 | 269 | 178 | | Startup current with soft starter | | A | 97 | 134 | 142 | 151 | 157 | 190 | 137 | | Compressors / circuits | | 7. | 2/1 | 2/1 | 2/1 | 2/1 | 2/1 | 2/1 | 4/2 | | Expansion vessel volume | | dm³ | 18 | 18 | 18 | 18 | 18 | 18 | 18 | | Buffer tank volume | | dm ³ | 250 | 250 | 350 | 350 | 350 | 350 | 350 | | Sound power level | (5)(E) | dB(A) | 80 | 84 | 83 | 83 | 87 | 88 | 87 | | Fransport weight unit with pump and tank | (3)(L) | kg | 938 | 950 | 990 | 1006 | 1092 | 1177 | 143 | | nunsport weight unit with pump und tank | | Ng | 750 | 750 | 770 | 1000 | | | | | Operating weight unit with nump and full tank | | ka | 1288 | 1300 | 1340 | 1356 | 1447 | 1527 | 1785 | | Operating weight unit with pump and full tank | | kg | 1288 | 1300 | 1340 | 1356 | 1442 | 1527 | 1785 | | | | kg | 1288
133 | 1300
134 | 1340
164 | 1356
173 | 1442
174 | 1527
204 | 1785
213 | | V-IPER H | | kg
V-ph-Hz | | | | | | | | | V-IPER H
Power supply | (1)(E) | | | | | 173 | | | | | V-IPER H Power supply Cooling capacity | (1)(E)
(1)(E) | V-ph-Hz | 133 | 134 | 164 | 173
400 - 3N - 50 | 174 | 204 | 213 205 | | V-IPER H Power supply Cooling capacity Total power input | | V-ph-Hz
kW | 133 125 | 134
130 | 164
154 | 173
400 - 3N - 50
163 | 174 168 | 204
191 | 213
205
64,7 | | V-IPER H Power supply Cooling capacity Total power input EER | (1)(E) | V-ph-Hz
kW | 133
125
40,0 | 134
130
41,9 | 164
154
48,5 | 173
400 - 3N - 50
163
50,8 | 174
168
52,5 | 204
191
60,0 | 205
64,7
3,17 | | V-IPER H Power supply Cooling capacity Total power input EER SEER | (1)(E)
(1)(E) | V-ph-Hz
kW | 133
125
40,0
3,11 | 134
130
41,9
3,11 | 164
154
48,5
3,18 | 173
400 - 3N - 50
163
50,8
3,21 | 174
168
52,5
3,20 | 191
60,0
3,18 | 205
64,7
3,17
4,64 | | V-IPER H Power supply Cooling capacity Total power input EER SEER Water flow | (1)(E)
(1)(E)
(2)(E) | V-ph-Hz
kW
kW | 133
125
40,0
3,11
4,42 | 134
130
41,9
3,11
4,60 | 154
48,5
3,18
4,46 | 173
400 - 3N - 50
163
50,8
3,21
4,24 | 174
168
52,5
3,20
4,05 | 191
60,0
3,18
4,41 | 205
64,7
3,17
4,64 | | V-IPER H Power supply Cooling capacity Fotal power input EEER SEER Water flow Water pressure drop | (1)(E)
(1)(E)
(2)(E)
(1) | V-ph-Hz kW kW | 133
125
40,0
3,11
4,42
21421 | 134
130
41,9
3,11
4,60
22441 | 164
154
48,5
3,18
4,46
26551 | 173
400 - 3N - 50
163
50,8
3,21
4,24
28051 |
174
168
52,5
3,20
4,05
28915 | 204
191
60,0
3,18
4,41
32869 | 205
64,7
3,17
4,64
3529
35 | | V-IPER H Power supply Cooling capacity Total power input EER SEER Water flow Water pressure drop Available pressure head - LP pumps | (1)(E)
(1)(E)
(2)(E)
(1)
(1)(E) | V-ph-Hz
kW
kW | 125
40,0
3,11
4,42
21421
23 | 134
130
41,9
3,11
4,60
22441
28 | 164
154
48,5
3,18
4,46
26551
35 | 173
400 - 3N - 50
163
50,8
3,21
4,24
28051
31 | 174
168
52,5
3,20
4,05
28915
23 | 204
191
60,0
3,18
4,41
32869
28 | 205
64,7
3,17
4,64
3529
35 | | V-IPER H Power supply Cooling capacity Total power input EER SEER Water flow Water pressure drop Available pressure head - LP pumps Heating capacity | (1)(E)
(1)(E)
(2)(E)
(1)
(1)(E)
(1) | V-ph-Hz
kW
kW | 125
40,0
3,11
4,42
21421
23
141 | 134
130
41,9
3,11
4,60
22441
28
135 | 164
154
48,5
3,18
4,46
26551
35
160 | 173
400 - 3N - 50
163
50,8
3,21
4,24
28051
31
161 | 174 168 52,5 3,20 4,05 28915 23 168 | 204
191
60,0
3,18
4,41
32869
28
157 | 205
64,7
3,17
4,64
3529
35
148
210 | | V-IPER H Power supply Cooling capacity Total power input EER SEER Water flow Water pressure drop Available pressure head - LP pumps Heating capacity Total power input | (1)(E)
(1)(E)
(2)(E)
(1)
(1)(E)
(1)
(3)(E) | V-ph-Hz kW kW l/h kPa kPa kW | 133
125
40,0
3,11
4,42
21421
23
141
126 | 134
130
41,9
3,11
4,60
22441
28
135 | 164
154
48,5
3,18
4,46
26551
35
160
161 | 173
400 - 3N - 50
163
50,8
3,21
4,24
28051
31
161
167 | 174 168 52,5 3,20 4,05 28915 23 168 175 | 204
191
60,0
3,18
4,41
32869
28
157
200 | 205
64,7
3,17
4,64
3529
35
148
210
63,8 | | V-IPER H Power supply Cooling capacity Total power input EEER SEER Water flow Water pressure drop Available pressure head - LP pumps Heating capacity Total power input COP | (1)(E)
(1)(E)
(2)(E)
(1)
(1)(E)
(1)
(3)(E)
(3)(E) | V-ph-Hz kW kW l/h kPa kPa kW | 133
125
40,0
3,11
4,42
21421
23
141
126
38,2 | 134
130
41,9
3,11
4,60
22441
28
135
131
40,1 | 164
154
48,5
3,18
4,46
26551
35
160
161
49,8 | 173
400 - 3N - 50
163
50,8
3,21
4,24
28051
31
161
167
51,8 | 174 168 52,5 3,20 4,05 28915 23 168 175 53,0 | 204
191
60,0
3,18
4,41
32869
28
157
200
59,9 | 205
64,7
3,17
4,64
3529 | | V-IPER H Power supply Cooling capacity Total power input EER SEER Water flow Water pressure drop Available pressure head - LP pumps Heating capacity Total power input COP SCOP | (1)(E)
(1)(E)
(2)(E)
(1)
(1)(E)
(1)
(3)(E)
(3)(E)
(3)(E) | V-ph-Hz kW kW l/h kPa kPa kW | 133
125
40,0
3,11
4,42
21421
23
141
126
38,2
3,31 | 134
130
41,9
3,11
4,60
22441
28
135
131
40,1
3,28 | 164
154
48,5
3,18
4,46
26551
35
160
161
49,8
3,23 | 173
400 - 3N - 50
163
50,8
3,21
4,24
28051
31
161
167
51,8
3,22 | 174 168 52,5 3,20 4,05 28915 23 168 175 53,0 3,30 | 204
191
60,0
3,18
4,41
32869
28
157
200
59,9
3,33 | 213
205
64,7
3,17
4,64
3529
35
148
210
63,8
3,30
3,80 | | V-IPER H Power supply Cooling capacity Total power input EEER SEER Water flow Water pressure drop Available pressure head - LP pumps Heating capacity Total power input COP SCOP Heating energy efficiency class | (1)(E)
(2)(E)
(1)
(1)(E)
(1)
(3)(E)
(3)(E)
(3)(E)
(2)(E) | V-ph-Hz kW kW l/h kPa kPa kW | 133
125
40,0
3,11
4,42
21421
23
141
126
38,2
3,31
3,91 | 134
130
41,9
3,11
4,60
22441
28
135
131
40,1
3,28
3,81 | 164
154
48,5
3,18
4,46
26551
35
160
161
49,8
3,23
3,71 (E) | 173
400 - 3N - 50
163
50,8
3,21
4,24
28051
31
161
167
51,8
3,22
3,58 | 174 168 52,5 3,20 4,05 28915 23 168 175 53,0 3,30 3,82 | 204
191
60,0
3,18
4,41
32869
28
157
200
59,9
3,33
3,86 | 213
205
64,7
3,17
4,64
3529
35
148
210
63,8
3,30
3,80
A++ | | V-IPER H Power supply Cooling capacity Total power input EEER SEEER Water flow Water pressure drop Available pressure head - LP pumps Heating capacity Total power input COP SCOP Heating energy efficiency class Water flow | (1)(E)
(1)(E)
(2)(E)
(1)
(1)(E)
(1)
(3)(E)
(3)(E)
(3)(E)
(2)(E)
(4)(E) | V-ph-Hz
kW
kW
I/h
kPa
kPa
kW | 133
125
40,0
3,11
4,42
21421
23
141
126
38,2
3,31
3,91
A++ | 134
130
41,9
3,11
4,60
22441
28
135
131
40,1
3,28
3,81
A++ | 164
154
48,5
3,18
4,46
26551
35
160
161
49,8
3,23
3,71 (E)
A+ | 173
400 - 3N - 50
163
50,8
3,21
4,24
28051
31
161
167
51,8
3,22
3,58
A+ | 174 168 52,5 3,20 4,05 28915 23 168 175 53,0 3,30 3,82 A++ | 204
191
60,0
3,18
4,41
32869
28
157
200
59,9
3,33
3,86
A++ | 213
205
64,7
3,17
4,64
3529
35
148
210
63,8
3,30
3,80
A++ | | A-IPER H Power supply Cooling capacity Fotal power input EER SEER Water flow Water pressure drop Available pressure head - LP pumps Heating capacity Fotal power input EOP ECOP Heating energy efficiency class Water flow Water pressure drop | (1)(E)
(2)(E)
(1)
(1)(E)
(1)
(3)(E)
(3)(E)
(3)(E)
(2)(E)
(4)(E)
(3) | V-ph-Hz
kW
kW
I/h
kPa
kPa
kW
kW | 133
125
40,0
3,11
4,42
21421
23
141
126
38,2
3,31
3,91
A++
21889 | 134
130
41,9
3,11
4,60
22441
28
135
131
40,1
3,28
3,81
A++
22789 | 164 154 48,5 3,18 4,46 26551 35 160 161 49,8 3,23 3,71 (E) A+ 27911 | 173
400 - 3N - 50
163
50,8
3,21
4,24
28051
31
161
167
51,8
3,22
3,58
A+
28899 | 174 168 52,5 3,20 4,05 28915 23 168 175 53,0 3,30 3,82 A++ 30379 | 204
191
60,0
3,18
4,41
32869
28
157
200
59,9
3,33
3,86
A++
34639 | 213
205
64,7
3,17
4,64
3529
35
148
210
63,8
3,30 | | Proper H Prower supply Cooling capacity Fotal power input EER SEER Water flow Water pressure drop Available pressure head - LP pumps Heating capacity Fotal power input EOP SCOP Heating energy efficiency class Water flow Water pressure drop Available pressure head - LP pumps | (1)(E)
(1)(E)
(2)(E)
(1)
(1)(E)
(1)
(3)(E)
(3)(E)
(3)(E)
(2)(E)
(4)(E)
(3)
(3)(E) | V-ph-Hz
kW
kW
I/h
kPa
kPa
kW
kW | 133
125
40,0
3,11
4,42
21421
23
141
126
38,2
3,31
3,91
A++
21889
24 | 134
130
41,9
3,11
4,60
22441
28
135
131
40,1
3,28
3,81
A++
22789
29 | 164
154
48,5
3,18
4,46
26551
35
160
161
49,8
3,23
3,71 (E)
A+
27911
38 | 173
400 - 3N - 50
163
50,8
3,21
4,24
28051
31
161
167
51,8
3,22
3,58
A+
28899
32 | 174 168 52,5 3,20 4,05 28915 23 168 175 53,0 3,30 3,82 A++ 30379 25 | 204
191
60,0
3,18
4,41
32869
28
157
200
59,9
3,33
3,86
A++
34639
31 | 213
205
64,7
3,17
4,64
3529
35
148
210
63,8
3,30
3,80
A++
3650
37 | | A-IPER H Power supply Cooling capacity C | (1)(E)
(1)(E)
(2)(E)
(1)
(1)(E)
(1)
(3)(E)
(3)(E)
(3)(E)
(2)(E)
(4)(E)
(3)
(3)(E) | V-ph-Hz
kW
kW
I/h
kPa
kW
kW | 133
125
40,0
3,11
4,42
21421
23
141
126
38,2
3,31
3,91
A++
21889
24
126 | 134
130
41,9
3,11
4,60
22441
28
135
131
40,1
3,28
3,81
A++
22789
29
117 | 164 154 48,5 3,18 4,46 26551 35 160 161 49,8 3,23 3,71 (E) A+ 27911 38 146 | 173
400 - 3N - 50
163
50,8
3,21
4,24
28051
31
161
167
51,8
3,22
3,58
A+
28899
32
151 | 174 168 52,5 3,20 4,05 28915 23 168 175 53,0 3,30 3,82 A++ 30379 25 157 | 204
191
60,0
3,18
4,41
32869
28
157
200
59,9
3,33
3,86
A++
34639
31
143 | 213
205
64,7
3,17
4,64
3529
35
148
210
63,8
3,30
3,80
A++
3650. | | A-IPER H Power supply Cooling capacity C | (1)(E)
(1)(E)
(2)(E)
(1)
(1)(E)
(1)
(3)(E)
(3)(E)
(3)(E)
(2)(E)
(4)(E)
(3)
(3)(E) | V-ph-Hz
kW
kW
I/h
kPa
kPa
kW
kW | 133
125
40,0
3,11
4,42
21421
23
141
126
38,2
3,31
3,91
A++
21889
24
126
98,0 | 134 130 41,9 3,11 4,60 22441 28 135 131 40,1 3,28 3,81 A++ 22789 29 117 101 | 164 154 48,5 3,18 4,46 26551 35 160 161 49,8 3,23 3,71 (E) A+ 27911 38 146 125 | 173
400 - 3N - 50
163
50,8
3,21
4,24
28051
31
161
167
51,8
3,22
3,58
A+
28899
32
151
125 | 174 168 52,5 3,20 4,05 28915 23 168 175 53,0 3,30 3,82 A++ 30379 25 157 136 280 | 204 191 60,0 3,18 4,41 32869 28 157 200 59,9 3,33 3,86 A++ 34639 31 143 148 | 213
205
64,7
3,17
4,64
3529
35
148
210
63,8
3,30
3,80
A++
3650
37
131
149 | | V-IPER H Power supply Cooling capacity Fotal power input EEER SEEER Water flow Water pressure drop Available pressure head - LP pumps Heating capacity Fotal power input ECOP Heating
energy efficiency class Water flow Water pressure drop Available pressure head - LP pumps Heating energy efficiency class Water flow Water pressure drop Available pressure head - LP pumps Maximum current absorption Start up current Startup current with soft starter | (1)(E)
(1)(E)
(2)(E)
(1)
(1)(E)
(1)
(3)(E)
(3)(E)
(3)(E)
(2)(E)
(4)(E)
(3)
(3)(E) | V-ph-Hz
kW
kW
I/h
kPa
kPa
kW
kW | 133
125
40,0
3,11
4,42
21421
23
141
126
38,2
3,31
3,91
A++
21889
24
126
98,0
242
181 | 134 130 41,9 3,11 4,60 22441 28 135 131 40,1 3,28 3,81 A++ 22789 29 117 101 245 184 | 164 154 48,5 3,18 4,46 26551 35 160 161 49,8 3,23 3,71 (E) A+ 27911 38 146 125 269 208 | 173
400 - 3N - 50
163
50,8
3,21
4,24
28051
31
161
167
51,8
3,22
3,58
A+
28899
32
151
125
313
235 | 174 168 52,5 3,20 4,05 28915 23 168 175 53,0 3,30 3,82 A++ 30379 25 157 136 280 219 | 204 191 60,0 3,18 4,41 32869 28 157 200 59,9 3,33 3,86 A++ 34639 31 143 148 337 258 | 213
205
64,7
3,17
4,64
3529
35
148
210
63,8
3,30
3,80
A++
3650
37
131
149
377
281 | | V-IPER H Power supply Cooling capacity Total power input EEER SEEER Water flow Water pressure drop Available pressure head - LP pumps Heating capacity Total power input COP SCOP Heating energy efficiency class Water flow Water pressure drop Available pressure head - LP pumps Heating energy efficiency class Water flow Water pressure drop Available pressure head - LP pumps Maximum current absorption Start up current Startup current with soft starter Compressors / circuits | (1)(E)
(1)(E)
(2)(E)
(1)
(1)(E)
(1)
(3)(E)
(3)(E)
(3)(E)
(2)(E)
(4)(E)
(3)
(3)(E) | V-ph-Hz
kW
kW
I/h
kPa
kPa
kW
kW | 133 125 40,0 3,11 4,42 21421 23 141 126 38,2 3,31 3,91 A++ 21889 24 126 98,0 242 181 3/1 | 134 130 41,9 3,11 4,60 22441 28 135 131 40,1 3,28 3,81 A++ 22789 29 117 101 245 184 4/2 | 164 154 48,5 3,18 4,46 26551 35 160 161 49,8 3,23 3,71 (E) A+ 27911 38 146 125 269 208 4/2 | 173
400 - 3N - 50
163
50,8
3,21
4,24
28051
31
161
167
51,8
3,22
3,58
A+
28899
32
151
125
313
235
3/1 | 174 168 52,5 3,20 4,05 28915 23 168 175 53,0 3,30 3,82 A++ 30379 25 157 136 280 219 4/2 | 204 191 60,0 3,18 4,41 32869 28 157 200 59,9 3,33 3,86 A++ 34639 31 143 148 337 258 4/2 | 213
205
64,7
3,17
4,64
3529
35
148
210
63,8
3,30
3,80
A++
3650
37
131
149
377
281 | | V-IPER H Power supply Cooling capacity Total power input EEER SEEER Water flow Water flow Water pressure drop Available pressure head - LP pumps Heating capacity Total power input COP SCOP Heating energy efficiency class Water flow Water flow Water pressure drop Available pressure head - LP pumps Startup current absorption Start up current Startup current with soft starter Compressors / circuits Expansion vessel volume | (1)(E)
(1)(E)
(2)(E)
(1)
(1)(E)
(1)
(3)(E)
(3)(E)
(3)(E)
(2)(E)
(4)(E)
(3)
(3)(E) | V-ph-Hz
kW
kW
I/h
kPa
kPa
kW
kW | 133 125 40,0 3,11 4,42 21421 23 141 126 38,2 3,31 3,91 A++ 21889 24 126 98,0 242 181 3/1 18 | 134 130 41,9 3,11 4,60 22441 28 135 131 40,1 3,28 3,81 A++ 22789 29 117 101 245 184 4/2 | 164 154 48,5 3,18 4,46 26551 35 160 161 49,8 3,23 3,71 (E) A+ 27911 38 146 125 269 208 4/2 24 | 173
400 - 3N - 50
163
50,8
3,21
4,24
28051
31
161
167
51,8
3,22
3,58
A+
28899
32
151
125
313
235
3/1
24 | 174 168 52,5 3,20 4,05 28915 23 168 175 53,0 3,30 3,82 A++ 30379 25 157 136 280 219 4/2 24 | 204 191 60,0 3,18 4,41 32869 28 157 200 59,9 3,33 3,86 A++ 34639 31 143 148 337 258 4/2 24 | 213
205
64,7
3,17
4,64
3529
35
148
210
63,8
3,30
3,80
A++
3650
37
131
149
377
281
3/1
24 | | V-IPER H Power supply Cooling capacity Total power input EEER SEEER Water flow Water pressure drop Available pressure head - LP pumps Heating capacity Total power input COP SCOP Heating energy efficiency class Water flow Water flow Water pressure drop Available pressure head - LP pumps Heating energy efficiency class Water flow Start up current absorption Start up current Startup current with soft starter Compressors / circuits Expansion vessel volume Buffer tank volume | (1)(E) (2)(E) (1) (1)(E) (1) (3)(E) (3)(E) (3)(E) (2)(E) (4)(E) (3) (3)(E) (3)(E) (3)(E) (3)(E) (3)(E) (3)(E) | V-ph-Hz
kW
kW
I/h
kPa
kPa
kW
kW | 133
125
40,0
3,11
4,42
21421
23
141
126
38,2
3,31
3,91
A++
21889
24
126
98,0
242
181
3/1
18
350 | 134 130 41,9 3,11 4,60 22441 28 135 131 40,1 3,28 3,81 A++ 22789 29 117 101 245 184 4/2 18 350 | 164 154 48,5 3,18 4,46 26551 35 160 161 49,8 3,23 3,71 (E) A+ 27911 38 146 125 269 208 4/2 24 450 | 173
400 - 3N - 50
163
50,8
3,21
4,24
28051
31
161
167
51,8
3,22
3,58
A+
28899
32
151
125
313
225
3/1
24
450 | 174 168 52,5 3,20 4,05 28915 23 168 175 53,0 3,30 3,82 A++ 30379 25 157 136 280 219 4/2 24 450 | 204 191 60,0 3,18 4,41 32869 28 157 200 59,9 3,33 3,86 A++ 34639 31 143 148 337 258 4/2 24 450 | 213
205
64,7
3,17
4,64
3529
35
148
210
63,8
3,30
3,80
A++
3650
37
131
149
377
281
3/1
24 | | Operating weight unit with pump and full tank V-IPER H Power supply Cooling capacity Total power input EER SEER Water flow Water pressure drop Available pressure head - LP pumps Heating capacity Total power input COP SCOP Heating energy efficiency class Water flow Water pressure drop Available pressure head - LP pumps Heating energy efficiency class Water flow Start up current absorption Start up current Startup current with soft starter Compressors / circuits Expansion vessel volume Buffer tank volume Sound power level Transport weight unit with pump and tank | (1)(E)
(1)(E)
(2)(E)
(1)
(1)(E)
(1)
(3)(E)
(3)(E)
(3)(E)
(2)(E)
(4)(E)
(3)
(3)(E) | V-ph-Hz
kW
kW
I/h
kPa
kPa
kW
kW | 133 125 40,0 3,11 4,42 21421 23 141 126 38,2 3,31 3,91 A++ 21889 24 126 98,0 242 181 3/1 18 | 134 130 41,9 3,11 4,60 22441 28 135 131 40,1 3,28 3,81 A++ 22789 29 117 101 245 184 4/2 | 164 154 48,5 3,18 4,46 26551 35 160 161 49,8 3,23 3,71 (E) A+ 27911 38 146 125 269 208 4/2 24 | 173
400 - 3N - 50
163
50,8
3,21
4,24
28051
31
161
167
51,8
3,22
3,58
A+
28899
32
151
125
313
235
3/1
24 | 174 168 52,5 3,20 4,05 28915 23 168 175 53,0 3,30 3,82 A++ 30379 25 157 136 280 219 4/2 24 | 204 191 60,0 3,18 4,41 32869 28 157 200 59,9 3,33 3,86 A++ 34639 31 143 148 337 258 4/2 24 | 213
205
64,7
3,17
4,64
3529
35
148
210
63,8
3,30
3,80
A++
3650.
37
131
149 | # V-IPER H HEAT PUMPS RATED TECHNICAL DATA | V-IPER H | | | 226 | 256 | 276 | 306 | 336 | 386 | |---|--------|-----------------|-------|-------|-------|---------|-------|-------| | Power supply | | V-ph-Hz | | | 400 | 3N - 50 | | | | Cooling capacity | (1)(E) | kW | 213 | 250 | 271 | 290 | 327 | 368 | | Total power input | (1)(E) | kW | 67,8 | 80,1 | 85,1 | 90,7 | 104 | 116 | | EER | (1)(E) | | 3,13 | 3,12 | 3,18 | 3,20 | 3,13 | 3,17 | | SEER | (2)(E) | | 4,45 | 4,66 | 4,46 | 4,37 | 4,45 | 4,43 | | Water flow | (1) | I/h | 36558 | 42923 | 46547 | 49849 | 56215 | 63238 | | Water pressure drop | (1)(E) | kPa | 27 | 31 | 33 | 37 | 40 | 45 | | Available pressure head - LP pumps | (1) | kPa | 151 | 138 | 177 | 167 | 150 | 161 | | Heating capacity | (3)(E) | kW | 219 | 252 | 278 | 297 | 336 | 378 | | Total power input | (3)(E) | kW | 66,2 | 76,3 | 84,8 | 89,4 | 102 | 116 | | COP | (3)(E) | | 3,31 | 3,30 | 3,29 | 3,32 | 3,30 | 3,27 | | SCOP | (2)(E) | | 4,25 | 4,33 | 4,02 | 4,14 | 4,22 | 3,94 | | Heating energy efficiency class | (4)(E) | | | | A- | ++ | | | | Water flow | (3) | I/h | 38079 | 43757 | 48328 | 51512 | 58369 | 65670 | | Water pressure drop | (3)(E) | kPa | 29 | 32 | 35 | 39 | 43 | 48 | | Available pressure head - LP pumps | (3) | kPa | 136 | 116 | 160 | 146 | 121 | 141 | | Maximum current absorption | | Α | 162 | 195 | 206 | 222 | 247 | 274 | | Start up current | | Α | 278 | 339 | 395 | 411 | 474 | 502 | | Startup current with soft starter | | Α | 229 | 278 | 316 | 332 | 379 | 407 | | Compressors / circuits | | | | | 6 | /2 | | | | Expansion vessel volume | | dm ³ | 24 | 24 | 24 | 24 | 24 | 24 | | Buffer tank volume | | dm ³ | 450 | 450 | 750 | 750 | 750 | 750 | | Sound power level | (5)(E) | dB(A) | 90 | 90 | 90 | 91 | 93 | 93 | | Transport weight unit with pump and tank | | kg | 2160 | 2186 | 2919 | 2926 | 3032 | 4329 | | Operating weight unit with pump and full tank | | kg | 2610 | 2636 | 3669 | 3676 | 3782 | 5079 | ⁽¹⁾ Outdoor air temperature 35°C, water temperature 12°C/7°C (EN14511:2022) (2) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. (3) Outdoor air temperature dry bulb 7°C / wet bulb 6°C, water temperature 40°C / 45°C (EN14511:2022) (4) Seasonal energy efficiency class for LOW TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++ → D] (5) Sound power level measured according to ISO 9614 (E) EUROVENT certified data # **V-IPER Chillers and heat pumps** # DIMENSIONAL DRAWINGS ### LEGEND | 1 | Water drainage 1/2" female | |---
-------------------------------------| | 2 | Water inlet Victaulic 2" | | 3 | Water outlet Victaulic 2" | | 4 | Vibration dumpers | | Н | Versione C: 2459 - Versione H: 2252 | # DIMENSIONAL DRAWINGS # VPR 72 - 82 - 92 - 112 - 133 2 4 4B 4 1203 1545 4A 1538 2250 1.5 m 1.5 m ### LEGEND | 1 | Water drainage 1/2" female | |---|---| | 2 | Water inlet Victaulic 2 1/2" | | 3 | Water outlet Victaulic 2 1/2" | | 4 | Vibration dumpers (4A only for units with buffer tank, 4B only for units without buffer tank) | # V-IPER Chillers and heat pumps # DIMENSIONAL DRAWINGS # VPR 114 - 134 ### LEGEND | 1 | Water drainage 1/2" female | | |---|-------------------------------|--| | 2 | Water inlet Victaulic 2 1/2" | | | 3 | Water outlet Victaulic 2 1/2" | | | 4 | Vibration dumpers | | | | | | ### VPR 173 - 213 - 164 - 174 - 204 - 226 - 256 | 1 | Water drainage 1/2" female | |---|---| | 2 | Water inlet Victaulic 4" | | 3 | Water outlet Victaulic 4" | | 4 | Vibration dumpers | | 5 | Electric control board | | 6 | Victaulic adapter from 4" to 3" to be mounted on-site | | 7 | Water outlet, evaporator only | | V-IPER | A | В | C | D | |-----------------------------|----------|-----|-----|---------| | V-IF LN | mm | mm | mm | mm | | 164 - 174 - 204 - 226 - 256 | 678 | 655 | 584 | 655 (1) | | 173 - 213 | 628 | 796 | 584 | 796 | | For 2 numps version D = | - 880 mm | | | | ### DIMENSIONAL DRAWINGS # Air chillers and heat pumps LCX # Outdoor packaged unit # LCX 55 - 360 kW compressor Refrigerant R-410A Cooling only Heating/ Packaged Cooling execution LCX: wide range of models and configurability The main feature of the new LCX design is its extremely wide range: the 16 models that comprise it can be built as chiller, free cooling, or heat pump versions, in 2 different acoustic configurations, and cover a range of powers from 55 to 360 kW. The possibility of setting up different cooling circuits in units of the same power means being able to personalise efficiency levels under full or part load conditions. - 1 circuit, 2 compressors. The solution of using two compressors in a single cooling circuit increases efficiency under part load conditions, reaching ESEER/SEER and SCOP values greater than 4. - 2 circuits / 4 compressors, 4 compressors enable the unit to output power in 4 steps and adapt perfectly to the actual thermal load of the system, while reducing starting currents. Complete hydronic kits can be incorporated within the units without modifying their size and you have the option of choosing the water circulation pump. All units, irrespective of type of construction, are equipped with electronic expansion valves to maximise efficiency under part load conditions. # **PLUS** - » Super low noise execution available on request - » Electronic expansion valve - » Incorporable hydraulic kit - » Up to 4 compressors - » 1 or 2 cooling circuits - » Remote connectivity with the most common protocols - » Super low noise execution available on request LCX heat pumps and water chillers are designed for heating or cooling the water to be used in air-conditioning systems for residential, commercial or industrial use. ### MAIN COMPONENTS #### Structure Made in galvanised steel sheet with a polyester powder coating for outdoors. The compressor compartment is completely sealed and may be accessed on 3 sides thanks to easy-toremove panels that greatly simplify maintenance and/or inspection. ### **Scroll compressors** Scroll compressors are now the best solution in terms of reliability and limiting the sound power emitted. The compressors are supplied complete with motor protection against overheating, overcurrents and excessive outlet gas temperatures. #### Heat exchanger Made of generously sized aluminum fins and copper piping. The special engineering allows defrost cycles to be carried out at maximum speed in the models with heat pump operation, which brings clear benefits in terms of the integrated efficiency of the whole cvcle. ### Electronic #### microprocessor control It completely manages the unit. The electronic control system allows the setpoint to be adjusted automatically according to the outdoor temperature in order to reduce consumption and broaden the working temperature range. With the advanced microprocessor control it is possible to set up LAN networks for controlling up to 4 units in parallel. #### Fan drive assembly Axial fans with airfoil blades made of plastic-aluminum composite, connected to an electric motor with external rotor. The condensation control system continuously and automatically regulates the fan speed Flectric fans with BLDC motor are available on request. ### **Cooling circuit** It can be made in two different versions with the same power (Efficiency Pack), using mainly: - R410A scroll compressors - · brazed plate heat exchangers - · finned block condenser - electronic expansion valve ### <u>CONFIGURATOR</u> The models are completely configurable by selecting the version and the options. To the right is shown an example of configuration. | Version | Field | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | |----------|-------|---|---|---|---|---|---|---|---|---|----|----|----|----|--| | LCX092HL | | 0 | В | 1 | S | 0 | 0 | S | 1 | 0 | 0 | G | 0 | ٧ | | To verify the compatibility of the options, use the selection software or the price list. #### **AVAILABLE VERSIONS** ### Only cooling versions LCX..CSG0 Standard execution LCX..CLG0 Low noise execution LCX..CQG0 Super low noise execution (on request) #### Reversible heat pump versions LCX..HSG0 Standard execution LCX..HLG0 Low noise execution LCX..HQG0 Super low noise execution (on request) #### CONFIGURATION OPTIONS - **Power supply** 400 V 3 N 50 Hz 400 V 3 50 Hz - 400 V 3 N 50 Hz + magnetic breakers - 400 V 3 50 Hz + magnetic breakers - Onboard controller and expansion valve - Advanced + electronic expansion valve User side water pump (*) В - 3 - 0 Absent - LP pump + expansion vessel - HP pump + expansion vessel - Double pump LP parallel operation and expansion vessel - Double pump HP parallel operation and expansion vessel - LP run and standby double pump + expansion vessel HP run and standby double pump + expansion vessel - Water buffer tank - Absent - Selected user side - Partial heat recovery - Absent D - Desuperheater with water pump free contact **Air flow modulation** - Absent Condensation control by phase-cut fans - Condensation control performed by EC fans Antifreezing kit Absent - **Evaporator** Evaporator and water pump - S Evaporator, water pump and water buffer tank - Remote communication - 0 Absent 8 - RS485 serial board (Carel / Modbus protocol) - GSM modem board - BACNET IP / PCOWEB serial board + supervision software Gweb - ${\tt BACNET\,IP\,/\,PCOWEB\,serial\,board+clock\,board+supervision\,software\,Gweb}$ - Special coils / Protective treatments 9 - Standard - Pre-painted fins with polyester paint - Cataphoresis treatment on fins and coil carpentry - Copper-copper - 10 **Packing** - Standard - Wooden cage - Wooden crate - Anti vibration shock mounts 11 - Rubber anti vibration shock mounts - M Spring anti vibration shock mounts - 12 Remote control - Absent - Remote simplified user panel - Remote user panel for advanced controller - 13 Unit installation accessories - Absent - Pair of couplings Victaulic - (*) Inverter versions also available | ACC | ESSORIES | | | |-----|---|---|---| | A | Power factor capacitors | Н | Set point compensation outdoor temperature probe | | В | Soft starter | I | Refrigerant pressure gauges | | C | Service kit (advanced controller required) | L | Filter regulating kit | | D | Clock board (included with advanced controller) | M | Directives reference other than "2014/68/UE - PED" | | E | ON/OFF status of the compressors | N | Unit lifting pipes | | F | Remote control for step capacity limit (advanced controller required) | P | Outdoor finned coil heat exchanger protection grille | | G | Configurable digital alarm board (advanced controller required) | Q | Outdoor finned coil heat exchanger protection filters | | | | | | # Air chillers and heat pumps LCX # LCX CS WATER CHILLERS RATED TECHNICAL DATA | LCX CS | | | 92 | 102 | 122 | 124 | 142 | 144 | 162 | |---|--------|-----------------|-------|-------|-------|---------------|-------|-------|-------| | Power supply | | V-ph-Hz | | | | 400 - 3N - 50 | | | | | Cooling capacity | (1)(E) | kW | 88,8 | 102 | 113 | 118 | 144 | 143 | 160 | | Total power input | (1)(E) | kW | 32,1 | 35,9 | 40,4 | 42,8 | 50,9 | 50,8 | 58,9 | | EER | (1)(E) | | 2,77 | 2,83 | 2,80 | 2,76 | 2,83 | 2,82 | 2,71 | | SEER | (2)(E) | | 4,14 | 4,45 | 4,15 | 4,11 | 4,14 | 4,20 | 4,32 | | Water flow | (1) | I/h | 15285 | 17530 | 19470 | 20283 | 24766 | 24674 | 27492 | | Water pressure drop | (1)(E) | kPa | 32 | 32 | 34 | 34 | 36 | 36 | 36 | | Available pressure head - LP pumps | (1) | kPa | 128 | 125 | 113 | 114 | 174 | 168 | 158 | | Maximum current absorption | | Α | 91,0 | 101 | 119 | 120 | 131 | 129 | 144 | | Start up current | | Α | 261 | 269 | 319 | 247 | 330 | 245 | 396 | | Startup current with soft starter | | Α | 199 | 207 | 254 | 172 | 265 | 186 | 313 | | Compressors / circuits | | | 2/1 | 2/1 | 2/1 | 4/2 | 2/1 | 4/2 | 2/1 | | Expansion vessel volume | | dm ³ | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Buffer tank volume | | dm ³ | 220 | 220 | 340 | 340 | 340 | 340 | 340 | | Sound power level | (3)(E) | dB(A) | 86 | 86 | 86 | 85 | 87 | 85 | 87 | | Transport weight unit with pump and tank | | kg | 918 | 918 | 1241 | 1301 | 1286 | 1321 | 1316 | | Operating weight unit with pump and full tank | | kg | 1138 | 1138 | 1581 | 1641 | 1626 | 1661 | 1656 | | LCX CS | | | 164 | 174 | 194 | 214 | 244 |
274 | 294 | | Power supply | | V-ph-Hz | | | | 400 - 3N - 50 | | | | | Cooling capacity | (1)(E) | kW | 152 | 162 | 183 | 202 | 245 | 264 | 294 | | Total power input | (1)(E) | kW | 56,4 | 58,2 | 65,6 | 76,2 | 95,7 | 90,5 | 104 | | EER | (1)(E) | | 2,70 | 2,78 | 2,79 | 2,65 | 2,56 | 2,91 | 2,82 | | SEER | (2)(E) | | 4,19 | 4,13 | 4,28 | 4,31 | 4,19 | 4,33 | 4,37 | | Water flow | (1) | I/h | 26160 | 27855 | 31447 | 34689 | 42201 | 45368 | 50493 | | Water pressure drop | (1)(E) | kPa | 36 | 37 | 37 | 38 | 38 | 39 | 40 | | Available pressure head - LP pumps | (1) | kPa | 159 | 170 | 150 | 161 | 196 | 183 | 170 | | Maximum current absorption | | Α | 150 | 136 | 155 | 173 | 196 | 224 | 237 | | Start up current | | Α | 266 | 252 | 310 | 330 | 380 | 403 | 468 | | Startup current with soft starter | | Α | 214 | 200 | 248 | 268 | 315 | 338 | 385 | | Compressors / circuits | | | | | , | 4/2 | , | | | | Expansion vessel volume | | dm³ | 12 | 24 | 24 | 24 | 24 | 24 | 24 | | Buffer tank volume | | dm³ | 340 | 600 | 600 | 600 | 600 | 765 | 765 | | Sound power level | (3)(E) | dB(A) | 85 | 88 | 88 | 89 | 89 | 89 | 89 | kg Transport weight unit with pump and tank Operating weight unit with pump and full tank Outdoor air temperature 35°C, water temperature 12°C / 7°C (EN14511:2022) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Sound power level measured according to ISO 9614 EUROVENT certified data # LCX CS WATER CHILLERS RATED TECHNICAL DATA | LCX CS | | | 324 | 364 | |---|--------|---------|-------|---------| | Power supply | | V-ph-Hz | 400 - | 3N - 50 | | Cooling capacity | (1)(E) | kW | 318 | 355 | | Total power input | (1)(E) | kW | 120 | 138 | | EER | (1)(E) | | 2,66 | 2,57 | | SEER | (2)(E) | | 4,12 | 4,15 | | Water flow | (1) | l/h | 54657 | 60969 | | Water pressure drop | (1)(E) | kPa | 39 | 41 | | Available pressure head - LP pumps | (1) | kPa | 162 | 143 | | Maximum current absorption | | Α | 251 | 300 | | Start up current | | Α | 476 | 497 | | Startup current with soft starter | | Α | 393 | 440 | | Compressors / circuits | | | 4 | / 2 | | Expansion vessel volume | | dm³ | 24 | 24 | | Buffer tank volume | | dm³ | 765 | 765 | | Sound power level | (3)(E) | dB(A) | 89 | 90 | | Transport weight unit with pump and tank | | kg | 2196 | 2196 | | Operating weight unit with pump and full tank | | kg | 2961 | 2961 | Outdoor air temperature 35°C, water temperature 12°C / 7°C (EN14511:2022) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Sound power level measured according to ISO 9614 EUROVENT certified data # Air chillers and heat pumps LCX ### LCX HS HEAT PUMPS RATED TECHNICAL DATA | LCX HS | | | 092 | 102 | 122 | 124 | 142 | 144 | 162 | |---|--------|---------|-------|-------|-------|---------------|-------|-------|-------| | Power supply | | V-ph-Hz | | | ı | 400 - 3N - 50 | | | | | Cooling capacity | (1)(E) | kW | 87,7 | 100 | 112 | 117 | 142 | 141 | 157 | | Total power input | (1)(E) | kW | 32,0 | 35,3 | 40,4 | 41,9 | 50,8 | 50,7 | 58,8 | | EER | (1)(E) | | 2,74 | 2,84 | 2,76 | 2,80 | 2,79 | 2,79 | 2,68 | | SEER | (2)(E) | | 4,11 | 4,38 | 4,02 | 3,97 | 4,10 | 4,16 | 4,27 | | Water flow | (1) | l/h | 15080 | 17276 | 19183 | 20189 | 24399 | 24308 | 27085 | | Water pressure drop | (1)(E) | kPa | 24 | 26 | 27 | 25 | 31 | 31 | 32 | | Available pressure head - LP pumps | (1) | kPa | 136 | 131 | 121 | 123 | 177 | 173 | 161 | | Heating capacity | (3)(E) | kW | 107 | 120 | 133 | 146 | 166 | 168 | 187 | | Total power input | (3)(E) | kW | 30,0 | 34,2 | 38,1 | 41,7 | 47,7 | 47,3 | 53,2 | | COP | (3)(E) | | 3,55 | 3,50 | 3,50 | 3,51 | 3,49 | 3,55 | 3,51 | | SCOP | (2)(E) | | 4,22 | 4,30 | 4,18 | 4,11 | 4,13 | 4,10 | 4,15 | | Heating energy efficiency class | (4)(E) | | | | | A++ | | | | | Water flow | (3) | l/h | 18461 | 20768 | 23116 | 25387 | 28831 | 29176 | 32378 | | Water pressure drop | (3)(E) | kPa | 36 | 37 | 39 | 39 | 43 | 44 | 46 | | Available pressure head - LP pumps | (3) | kPa | 130 | 123 | 113 | 114 | 162 | 156 | 139 | | Maximum current absorption | | Α | 91,0 | 101 | 119 | 120 | 131 | 129 | 144 | | Start up current | | Α | 261 | 269 | 319 | 247 | 330 | 245 | 396 | | Startup current with soft starter | | Α | 199 | 207 | 254 | 172 | 265 | 186 | 313 | | Compressors / circuits | | | 2/1 | 2/1 | 2/1 | 4/2 | 2/1 | 4/2 | 2/1 | | Expansion vessel volume | | dm³ | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Buffer tank volume | | dm³ | 220 | 220 | 340 | 340 | 340 | 340 | 340 | | Sound power level | (5)(E) | dB(A) | 86 | 86 | 86 | 85 | 87 | 85 | 87 | | Transport weight unit with pump and tank | | kg | 918 | 918 | 1241 | 1301 | 1286 | 1321 | 1316 | | Operating weight unit with pump and full tank | | kg | 1138 | 1138 | 1581 | 1641 | 1626 | 1661 | 1656 | | CX HS | | | 164 | 174 | 194 | 214 | 244 | 274 | 294 | | LCX HS | | | 164 | 174 | 194 | 214 | 244 | 274 | 294 | |---|--------|---------|-------|-------|-------|---------------|-------|-------|-------| | Power supply | | V-ph-Hz | | | | 400 - 3N - 50 | | | | | Cooling capacity | (1)(E) | kW | 150 | 160 | 180 | 199 | 242 | 260 | 289 | | Total power input | (1)(E) | kW | 56,3 | 58,1 | 65,6 | 76,2 | 95,7 | 90,4 | 104 | | EER | (1)(E) | | 2,66 | 2,74 | 2,74 | 2,61 | 2,53 | 2,88 | 2,77 | | SEER | (2)(E) | | 4,15 | 3,45 | 3,64 | 3,67 | 3,55 | 3,69 | 3,73 | | Water flow | (1) | I/h | 25773 | 27443 | 30948 | 34175 | 41577 | 44698 | 49746 | | Water pressure drop | (1)(E) | kPa | 32 | 34 | 34 | 35 | 35 | 35 | 35 | | Available pressure head - LP pumps | (1) | kPa | 162 | 172 | 152 | 164 | 198 | 186 | 173 | | Heating capacity | (3)(E) | kW | 181 | 189 | 213 | 232 | 281 | 308 | 342 | | Total power input | (3)(E) | kW | 50,7 | 56,9 | 64,6 | 71,0 | 85,6 | 88,7 | 99,5 | | COP | (3)(E) | | 3,56 | 3,32 | 3,31 | 3,27 | 3,28 | 3,47 | 3,44 | | SCOP | (2)(E) | | 4,07 | 3,57 | 3,64 | 3,64 | 3,66 | 3,71 | 3,74 | | Heating energy efficiency class | (4)(E) | | A++ | A+ | A+ | A+ | A+ | A+ | A+ | | Water flow | (3) | l/h | 31359 | 32758 | 37031 | 40301 | 48719 | 53462 | 59409 | | Water pressure drop | (3)(E) | kPa | 47 | 48 | 48 | 48 | 48 | 50 | 50 | | Available pressure head - LP pumps | (3) | kPa | 141 | 155 | 129 | 136 | 181 | 167 | 153 | | Maximum current absorption | | Α | 150 | 136 | 155 | 173 | 196 | 224 | 237 | | Start up current | | Α | 266 | 252 | 310 | 330 | 380 | 403 | 468 | | Startup current with soft starter | | Α | 214 | 200 | 248 | 268 | 315 | 338 | 385 | | Compressors / circuits | | | | | | 4/2 | | | | | Expansion vessel volume | | dm³ | 12 | 24 | 24 | 24 | 24 | 24 | 24 | | Buffer tank volume | | dm³ | 340 | 600 | 600 | 600 | 600 | 765 | 765 | | Sound power level | (5)(E) | dB(A) | 85 | 88 | 88 | 89 | 89 | 89 | 89 | | Transport weight unit with pump and tank | | kg | 1471 | 1608 | 1676 | 1686 | 1869 | 2129 | 2161 | | Operating weight unit with pump and full tank | | kg | 1811 | 2208 | 2276 | 2286 | 2469 | 2894 | 2926 | ⁽¹⁾ Outdoor air temperature 35°C, water temperature 12°C/7°C (EN14511:2022) (2) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. (3) Outdoor air temperature dry bulb 7°C / wet bulb 6°C, water temperature 40°C / 45°C (EN14511:2022) (4) Seasonal energy efficiency class for LOW TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++ → D] (5) Sound power level measured according to ISO 9614 (E) EUROVENT certified data # LCX HS HEAT PUMPS RATED TECHNICAL DATA | LCX HS | | | 324 | 364 | |---|--------|---------|---------|---------| | Power supply | | V-ph-Hz | 400 - 3 | 3N - 50 | | Cooling capacity | (1)(E) | kW | 324 | 349 | | Total power input | (1)(E) | kW | 119 | 138 | | EER | (1)(E) | | 2,72 | 2,53 | | SEER | (2)(E) | | 3,86 | 4,04 | | Water flow | (1) | l/h | 55669 | 60026 | | Water pressure drop | (1)(E) | kPa | 37 | 35 | | Available pressure head - LP pumps | (1) | kPa | 165 | 147 | | Heating capacity | (3)(E) | kW | 374 | 418 | | Total power input | (3)(E) | kW | 110 | 128 | | COP | (3)(E) | | 3,39 | 3,26 | | SCOP | (2)(E) | | 3,75 | 3,70 | | Heating energy efficiency class | (4)(E) | | А | + | | Water flow | (3) | l/h | 64891 | 72629 | | Water pressure drop | (3)(E) | kPa | 51 | 51 | | Available pressure head - LP pumps | (3) | kPa | 139 | 104 | | Maximum current absorption | | Α | 251 | 300 | | Start up current | | Α | 476 | 497 | | Startup current with soft starter | | Α | 393 | 440 | | Compressors / circuits | | | 4. | / 2 | | Expansion vessel volume | | dm³ | 24 | 24 | | Buffer tank volume | | dm³ | 765 | 765 | | Sound power level | (5)(E) | dB(A) | 89 | 90 | | Transport weight unit with pump and tank | | kg | 2196 | 2196 | | Operating weight unit with pump and full tank | | kg | 2961 | 2961 | Outdoor air temperature 35°C, water temperature 12°C / 7°C (EN14511:2022) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to
the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Outdoor air temperature dry bulb 7°C / wet bulb 6°C, water temperature 40°C / 45°C (EN14511:2022) Seasonal energy efficiency class for LOW TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++ → D] Sound power level measured according to ISO 9614 EUROVENT certified data # Air chillers and heat pumps LCX ### LCX CL WATER CHILLERS RATED TECHNICAL DATA | LCX CL | | | 062 | 072 | 082 | 092 | 094 | 102 | 104 | |---|--------|-----------------|-------|-------|-------|---------------|-------|-------|------| | Power supply | | V-ph-Hz | | | | 400 - 3N - 50 | | | | | Cooling capacity | (1)(E) | kW | 58,3 | 66,7 | 78,6 | 88,9 | 90,6 | 102 | 105 | | Total power input | (1)(E) | kW | 20,3 | 22,9 | 26,5 | 31,0 | 31,4 | 35,1 | 35,9 | | EER | (1)(E) | | 2,88 | 2,91 | 2,97 | 2,87 | 2,89 | 2,90 | 2,91 | | SEER | (2)(E) | | 4,13 | 4,39 | 4,64 | 4,40 | 4,15 | 4,67 | 4,46 | | Water flow | (1) | I/h | 10031 | 11481 | 13526 | 15297 | 15594 | 17545 | 1802 | | Water pressure drop | (1)(E) | kPa | 28 | 29 | 31 | 32 | 32 | 32 | 34 | | Available pressure head - LP pumps | (1) | kPa | 140 | 135 | 131 | 127 | 127 | 125 | 125 | | Maximum current absorption | | Α | 51,0 | 55,0 | 66,0 | 77,0 | 81,0 | 86,0 | 87,0 | | Start up current | | Α | 185 | 183 | 191 | 246 | 194 | 254 | 198 | | Startup current with soft starter | | Α | 111 | 124 | 139 | 184 | 122 | 192 | 137 | | Compressors / circuits | | | 2/1 | 2/1 | 2/1 | 2/1 | 4/2 | 2/1 | 4/2 | | Expansion vessel volume | | dm³ | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Buffer tank volume | | dm³ | 220 | 220 | 220 | 340 | 340 | 340 | 340 | | Sound power level | (3)(E) | dB(A) | 80 | 80 | 80 | 81 | 80 | 81 | 80 | | Transport weight unit with pump and tank | | kg | 762 | 767 | 847 | 1086 | 1217 | 1096 | 121 | | Operating weight unit with pump and full tank | | kg | 982 | 987 | 1067 | 1426 | 1557 | 1436 | 155 | | LCX CL | | | 122 | 124 | 142 | 144 | 162 | 164 | 194 | | Power supply | | V-ph-Hz | | | | 400 - 3N - 50 | | | | | Cooling capacity | (1)(E) | kW | 113 | 117 | 128 | 133 | 160 | 152 | 178 | | Total power input | (1)(E) | kW | 40,1 | 41,0 | 46,6 | 46,4 | 58,5 | 56,1 | 63,6 | | EER | (1)(E) | | 2,82 | 2,85 | 2,74 | 2,87 | 2,74 | 2,72 | 2,79 | | SEER | (2)(E) | | 4,15 | 4,23 | 4,10 | 4,16 | 4,20 | 4,15 | 4,21 | | Water flow | (1) | l/h | 19453 | 20090 | 21967 | 22953 | 27613 | 26228 | 3053 | | Water pressure drop | (1)(E) | kPa | 34 | 34 | 36 | 36 | 37 | 37 | 37 | | Available pressure head - LP pumps | (1) | kPa | 111 | 109 | 165 | 162 | 152 | 153 | 154 | | Maximum current absorption | | Α | 95,0 | 96,0 | 106 | 105 | 120 | 126 | 148 | | Start up current | | Α | 295 | 220 | 306 | 222 | 371 | 241 | 307 | | Startup current with soft starter | | Α | 230 | 146 | 241 | 163 | 288 | 189 | 245 | | Compressors / circuits | | | 2/1 | 4/2 | 2/1 | 4/2 | 2/1 | 4/2 | 4/2 | | Expansion vessel volume | | dm³ | 24 | 24 | 24 | 24 | 24 | 24 | 24 | | Buffer tank volume | | dm ³ | 600 | 600 | 600 | 600 | 600 | 600 | 600 | (3)(E) dB(A) kg Transport weight unit with pump and tank Operating weight unit with pump and full tank Sound power level Outdoor air temperature 35°C, water temperature 12°C / 7°C (EN14511:2022) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Sound power level measured according to ISO 9614 EUROVENT certified data # LCX CL WATER CHILLERS RATED TECHNICAL DATA | LCX CL | | | 214 | 244 | 274 | 294 | 324 | 364 | |---|--------|---------|-------|-------|-------|---------|-------|-------| | Power supply | | V-ph-Hz | | | 400 - | 3N - 50 | • | | | Cooling capacity | (1)(E) | kW | 198 | 220 | 256 | 279 | 316 | 338 | | Total power input | (1)(E) | kW | 74,2 | 83,9 | 90,0 | 107 | 122 | 150 | | EER | (1)(E) | | 2,66 | 2,62 | 2,84 | 2,59 | 2,59 | 2,26 | | SEER | (2)(E) | | 4,25 | 4,16 | 4,28 | 4,34 | 4,10 | 4,12 | | Water flow | (1) | l/h | 33965 | 37745 | 43948 | 47875 | 54311 | 58055 | | Water pressure drop | (1)(E) | kPa | 37 | 38 | 38 | 39 | 40 | 41 | | Available pressure head - LP pumps | (1) | kPa | 163 | 192 | 185 | 171 | 166 | 147 | | Maximum current absorption | | Α | 167 | 190 | 215 | 229 | 242 | 290 | | Start up current | | Α | 318 | 382 | 398 | 464 | 472 | 487 | | Startup current with soft starter | | Α | 256 | 317 | 333 | 381 | 389 | 430 | | Compressors / circuits | | | | | 4 | / 2 | | | | Expansion vessel volume | | dm³ | 24 | 24 | 24 | 24 | 24 | 24 | | Buffer tank volume | | dm³ | 600 | 600 | 765 | 765 | 765 | 765 | | Sound power level | (3)(E) | dB(A) | 85 | 85 | 87 | 87 | 87 | 88 | | Transport weight unit with pump and tank | | kg | 1726 | 1869 | 2129 | 2161 | 2196 | 2196 | | Operating weight unit with pump and full tank | | kg | 2326 | 2469 | 2894 | 2926 | 2961 | 2961 | Outdoor air temperature 35°C, water temperature 12°C / 7°C (EN14511:2022) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Sound power level measured according to ISO 9614 EUROVENT certified data # Air chillers and heat pumps LCX ### LCX HS HEAT PUMPS RATED TECHNICAL DATA | LCX HL | | | 062 | 072 | 082 | 092 | 094 | 102 | 104 | |---|--------|---------|-------|-------|-------|---------------|-------|-------|-------| | Power supply | | V-ph-Hz | | | | 400 - 3N - 50 | | | | | Cooling capacity | (1)(E) | kW | 57,3 | 65,6 | 77,6 | 87,4 | 89,0 | 101 | 103 | | Total power input | (1)(E) | kW | 20,3 | 22,9 | 26,5 | 31,1 | 31,5 | 35,2 | 36,1 | | EER | (1)(E) | | 2,82 | 2,86 | 2,93 | 2,81 | 2,83 | 2,85 | 2,86 | | SEER | (2)(E) | | 4,09 | 4,35 | 4,60 | 4,37 | 4,13 | 4,62 | 4,42 | | Water flow | (1) | l/h | 9856 | 11285 | 13358 | 15029 | 15313 | 17286 | 17778 | | Water pressure drop | (1)(E) | kPa | 25 | 24 | 26 | 25 | 25 | 29 | 29 | | Available pressure head - LP pumps | (1) | kPa | 143 | 139 | 136 | 134 | 133 | 127 | 130 | | Heating capacity | (3)(E) | kW | 66,5 | 76,1 | 87,8 | 103 | 105 | 113 | 117 | | Total power input | (3)(E) | kW | 19,0 | 21,3 | 24,8 | 28,7 | 29,7 | 32,2 | 33,8 | | COP | (3)(E) | | 3,50 | 3,57 | 3,53 | 3,58 | 3,53 | 3,49 | 3,48 | | SCOP | (2)(E) | | 4,17 | 4,38 | 4,38 | 4,36 | 4,13 | 4,03 | 4,19 | | Heating energy efficiency class | (4)(E) | | | | | A++ | | | | | Water flow | (3) | l/h | 11534 | 13190 | 15218 | 17819 | 18200 | 19506 | 20336 | | Water pressure drop | (3)(E) | kPa | 33 | 33 | 33 | 35 | 36 | 37 | 37 | | Available pressure head - LP pumps | (3) | kPa | 137 | 133 | 128 | 126 | 124 | 117 | 120 | | Maximum current absorption | | Α | 51,0 | 55,0 | 66,0 | 77,0 | 81,0 | 86,0 | 87,0 | | Start up current | | Α | 185 | 183 | 191 | 246 | 194 | 254 | 198 | | Startup current with soft starter | | Α | 111 | 124 | 139 | 184 | 122 | 192 | 137 | | Compressors / circuits | | | 2/1 | 2/1 | 2/1 | 2/1 | 4/2 | 2/1 | 4/2 | | Expansion vessel volume | | dm³ | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Buffer tank volume | | dm³ | 220 | 220 | 220 | 340 | 340 | 340 | 340 | | Sound power level | (5)(E) | dB(A) | 80 | 80 | 80 | 81 | 80 | 81 | 80 | | Transport weight unit with pump and tank | | kg | 762 | 767 | 847 | 1086 | 1217 | 1096 | 1217 | | Operating weight unit with pump and full tank | | kg | 982 | 987 | 1067 | 1426 | 1557 | 1436 | 1557 | | LCX HL | | | 122 | 124 | 142 | 144 | 162 | 164 | 194 | |---|--------|---------|-------|-------|-------|---------------|-------|-------|-------| | Power supply | | V-ph-Hz | | | | 400 - 3N - 50 | | | | | Cooling capacity | (1)(E) | kW | 112 | 115 | 126 | 133 | 158 | 150 | 176 | | Total power input | (1)(E) | kW | 40,6 | 41,1 | 47,1 | 47,0 | 59,6 | 56,4 | 63,6 | | EER | (1)(E) | | 2,75 | 2,81 | 2,68 | 2,82 | 2,65 | 2,67 | 2,77 | | SEER | (2)(E) | | 3,80 | 3,61 | 3,79 | 3,88 | 4,12 | 3,88 | 3,66 | | Water flow | (1) | I/h | 19202 | 19842 | 21739 | 22795 | 27214 | 25881 | 30277 | | Water pressure drop | (1)(E) | kPa | 27 | 27 | 29 | 29 | 34 | 32 | 33 | | Available pressure head - LP pumps | (1) | kPa | 118 | 116 | 172 | 169 | 154 | 157 | 157 | | Heating capacity | (3)(E) | kW | 135 | 139 | 147 | 154 | 182 | 173 | 206 | | Total power input | (3)(E) | kW | 38,0 | 39,4 | 45,1 | 43,7 | 53,0 | 53,8 | 59,9 | | COP | (3)(E) | | 3,56 | 3,52 | 3,27 | 3,52 | 3,43 | 3,22 | 3,44 | | SCOP | (2)(E) | | 4,38 | 4,22 | 3,95 | 3,74 | 3,77 | 3,91 | 3,81 | | Heating energy efficiency class | (4)(E) | | A++ | A++ | A++ | A+ | A+ | A++ | A++ | | Water flow | (3) | l/h | 23409 | 24033 | 25547 | 26722 | 31536 | 30016 | 35733 | | Water pressure drop | (3)(E) | kPa | 40 | 40 | 40 | 40 | 46 | 43 | 46 | | Available pressure head - LP pumps | (3) | kPa | 112 | 110 | 165 | 160 | 136 | 140 | 130 | | Maximum current absorption | | Α | 95,0 | 96,0 | 106 | 105 | 120 | 126 | 148 | | Start up current | | Α | 295 | 220 | 306 | 222 | 371 | 241 | 307 | | Startup current with soft starter | | Α | 230 | 146 | 241 | 163 | 288 | 189 | 245 | | Compressors / circuits | | | 2/1 | 4/2 | 2/1 | 4/2 | 2/1 | 4/2 | 4/2 | | Expansion vessel volume | | dm³ | 24 | 24 | 24 | 24 | 24 | 24 | 24 | | Buffer tank volume | | dm³ | 600 | 600 | 600 | 600 | 600 | 600 | 600 | | Sound power level | (5)(E) | dB(A) | 83 | 80 | 84 | 80 | 84 | 80 | 85 | | Transport weight unit with pump and tank | | kg | 1440 | 1455 |
1490 | 1470 | 1510 | 1620 | 1676 | | Operating weight unit with pump and full tank | | kg | 2040 | 2055 | 2090 | 2070 | 2110 | 2220 | 2276 | ⁽¹⁾ Outdoor air temperature 35°C, water temperature 12°C/7°C (EN14511:2022) (2) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. (3) Outdoor air temperature dry bulb 7°C / wet bulb 6°C, water temperature 40°C / 45°C (EN14511:2022) (4) Seasonal energy efficiency class for LOW TEMPERATURE room heating under AVERAGE climatic conditions [EURO PEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++ → D] (5) Sound power level measured according to ISO 9614 (E) EUROVENT certified data # LCX HS HEAT PUMPS RATED TECHNICAL DATA | LCX HL | | | 214 | 244 | 274 | 294 | 324 | |---|--------|-----------------|-------|-------|---------------|-------|-------| | Power supply | | V-ph-Hz | | | 400 - 3N - 50 | | | | Cooling capacity | (1)(E) | kW | 195 | 216 | 253 | 275 | 312 | | Total power input | (1)(E) | kW | 75,2 | 84,8 | 90,8 | 108 | 123 | | EER | (1)(E) | | 2,59 | 2,55 | 2,78 | 2,55 | 2,54 | | SEER | (2)(E) | | 3,89 | 3,68 | 3,86 | 3,82 | 3,89 | | Water flow | (1) | l/h | 33537 | 37139 | 43430 | 47237 | 53602 | | Water pressure drop | (1)(E) | kPa | 34 | 33 | 36 | 34 | 37 | | Available pressure head - LP pumps | (1) | kPa | 166 | 197 | 186 | 175 | 168 | | Heating capacity | (3)(E) | kW | 233 | 265 | 295 | 330 | 366 | | Total power input | (3)(E) | kW | 67,3 | 76,9 | 86,2 | 97,5 | 109 | | COP | (3)(E) | | 3,46 | 3,44 | 3,42 | 3,39 | 3,36 | | SCOP | (2)(E) | | 3,80 | 3,97 | 3,79 | 3,82 | 3,92 | | Heating energy efficiency class | (4)(E) | | A++ | A++ | A+ | A++ | A++ | | Water flow | (3) | l/h | 40476 | 45910 | 51192 | 57334 | 63554 | | Water pressure drop | (3)(E) | kPa | 49 | 50 | 50 | 50 | 51 | | Available pressure head - LP pumps | (3) | kPa | 137 | 176 | 164 | 151 | 139 | | Maximum current absorption | | Α | 167 | 190 | 215 | 229 | 242 | | Start up current | | Α | 318 | 382 | 398 | 464 | 472 | | Startup current with soft starter | | Α | 256 | 317 | 333 | 381 | 389 | | Compressors / circuits | | | | | 4/2 | | | | Expansion vessel volume | | dm ³ | 24 | 24 | 24 | 24 | 24 | | Buffer tank volume | | dm³ | 600 | 600 | 765 | 765 | 765 | | Sound power level | (5)(E) | dB(A) | 85 | 85 | 87 | 87 | 88 | | Transport weight unit with pump and tank | | kg | 1726 | 1869 | 2129 | 2161 | 2196 | | Operating weight unit with pump and full tank | | kg | 2326 | 2469 | 2894 | 2926 | 2961 | Outdoor air temperature 35°C, water temperature 12°C / 7°C (EN14511:2022) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Outdoor air temperature dry bulb 7°C / wet bulb 6°C, water temperature 40°C / 45°C (EN14511:2022) Seasonal energy efficiency class for LOW TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++ → D] Sound power level measured according to ISO 9614 EUROVENT certified data # Air chillers and heat pumps LCX ### DIMENSIONAL DRAWINGS 70 7D Heat recovery water outlet (1"), right-hand circuit Heat recovery water inlet (1"), right-hand circuit LCX 92 **LCX 102** S # DIMENSIONAL DRAWINGS | L | EG | EN | D | |---|----|----|---| | | | | | | 1 | Vibration dampers | |----|---| | 2 | Protection grill (optional) | | 3 | Lifting points | | 4 | Water inlet (Victaulic 2 1/2") | | 5 | Water outlet (Victaulic 2 1/2") | | 6 | Power supply input | | 7A | Heat recovery water outlet (1"), left-hand circuit | | 7B | Heat recovery water inlet (1"), left-hand circuit | | 7C | Heat recovery water outlet (1"), right-hand circuit | | 7D | Heat recovery water inlet (1"), right-hand circuit | | | | | MODEL | VERSION FRAME | |---------|---------------| | LCX 92 | L-Q | | LCX 102 | L-Q | | LCX 122 | S | | LCX 142 | S | | LCX 162 | S | | | | ## Air chillers and heat pumps LCX ## DIMENSIONAL DRAWINGS 7D Heat recovery water inlet (1"), right-hand circuit **LCX 164** S | ı | F | G | F | N | Γ | |---|---|---|---|----|---| | L | L | u | L | 14 | Ľ | | 1 | Vibration dampers | |----|---| | 2 | Protection grill (optional) | | 3 | Lifting points (optional) | | 4 | Water inlet (Victaulic 3") | | 5 | Water outlet (Victaulic 3") | | 6 | Power supply input | | 7A | Heat recovery water outlet (1"), left-hand circuit | | 7B | Heat recovery water inlet (1"), left-hand circuit | | 7C | Heat recovery water outlet (1"), right-hand circuit | | 7D | Heat recovery water inlet (1"), right-hand circuit | | * | With EC=1884 fans | | | | | MODEL | VERSION FRAME | |---------|---------------| | LCX 122 | L-Q | | LCX 124 | L-Q | | LCX 142 | L-Q | | LCX 144 | L-Q | | LCX 162 | L-Q | | LCX 164 | L-Q | | LCX 174 | S | | LCX 194 | S-L-Q | | LCX 214 | S | | | | ## Air chillers and heat pumps LCX | LEGEND | | |--------|--| | 1 | User interface | | 2 | Vibration dampers | | 3 | Power supply | | 4 | Lifting points (optional) | | 5 | Protection grill (optional) | | 6 | Water inlet (Victaulic 4") | | 7 | Water outlet (Victaulic 4") | | 8A | Heat recovery water outlet (1") left-hand circuit | | 8B | Heat recovery water inlet (1") left-hand circuit | | 8C | Heat recovery water outlet (1") right-hand circuit | | 8D | Heat recovery water inlet (1") right-hand circuit | | * | With EC=2367 fans | | MODEL | VERSION FRAME | |---------|---------------| | LCX 274 | S-L-Q | | LCX 294 | S-L-Q | | LCX 324 | S-L-Q | | LCX 364 | S - L | ## Outdoor packaged unit ## VLS 160 - 590 kW R-454B refrigerant exchanger Pipina shell and tube heat Cooling only compressor Heating/ Cooling ## **PLUS** - » Refrigerant with GWP of less than 500 - » Available version with R410A refrigerant (VRS) - » High seasonal efficiency values - » Electronic expansion valve - » Up to 6 compressors - » 1 or 2 cooling circuits - » Remote connectivity with the most common protocols - » Possibility to configure low-noise versions - » Available version with shell and tube heat exchanger VLS heat pumps and water chillers are designed for heating or cooling the water to be used in air-conditioning systems for residential, commercial, or industrial use. The use of low-GWP refrigerant ensures compliance with the limits established by the F-GAS regulation regarding gases that potentially contribute to global warming (greenhouse gases). ## Air-water unit with high seasonal efficiency and low-GWP refrigerant VLS is Galletti's new range of air-cooled monobloc chillers and heat pumps for outdoor installation featuring R454B refrigerant. R454B is a next generation A2L refrigerant with a GWP of only 467, one of the lowest on the market. This GWP value ensures that the VLS range complies with the gradual reduction of greenhouse gas emissions required by the F-GAS regulation, down to the stricter limits foreseen for 2030. The range consists of 13 models with cooling capacities ranging from 160 to 590 kW, available in cooling only or reversible heat pump versions. The range's main strength is its high seasonal efficiency, which is designed to permanently reduce annual energy consumption as well as meet the minimum efficiency requirements established by ErP 2021. In order to increase the efficiency at partial loads, all VLS models are provided with tandem or trio solutions (2 or 3 compressors on a single circuit) and equipped with electronic expansion valve as standard. The use of top quality components at the cutting edge of technology in the cooling, hydraulic, and electrical systems makes VLS units chillers state of the art in terms of efficiency, reliability, and operating limits. In fact, the ability to produce water from -10 $^{\circ}\text{C}$ to 56 °C and operate at full load with outdoor air temperatures from -15 °C to 46 °C is guaranteed. The range allows high configurability from an acoustic point of view, having a wide range of accessories designed to reduce noise emissions. It is also guaranteed the possibility of selecting the execution with shell and tube heat exchanger for all models above 200 kW. The advanced control, always present in the whole range, allows a continuous monitoring of the operating parameters, advanced adjustment logics, and connectivity. #### **CONFIGURATOR** The models are completely configurable by selecting the version and the options. To the right is shown an example of configuration. | Version | Field | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |------------|-------|---|---|---|---|---|---|---|---|---|----|----|----|----| | VLS162HS0A | | Α | 1 | S | 0 | Ε | 0 | 0 | М | 0 | 0 | G | 0 | 1 | To verify the compatibility of the options, use the selection software or the price list. #### **AVAILABLE VERSIONS** | Only cooling versio | ns and plate exchanger | Keversible heat pu | imp versions and plate heat exchanger | |---------------------|---|--------------------|--| | VLSCSOA | Power supply 400V-3N-50Hz | VLSHSOA | Power supply 400V-3N-50Hz | | VLSCS2A | Power supply 400V-3N-50Hz + circuit breaker | VLSHS2A | Power supply 400V-3N-50Hz + circuit breaker | | VLSCS4A | Power supply 400V-3-50Hz | VLSHS4A | Power supply 400V-3-50Hz | | VLSCS5A | Power supply 400V-3-50Hz + circuit breaker | VLSHS5A | Power
supply $400V-3-50Hz + circuit$ breaker | | Only cooling versio | ns and shell and tube heat exchanger | Reversible heat pu | ımp versions and shell and tube heat exchanger | | VLSCTOA | Power supply 400V-3N-50Hz | VLSHTOA | Power supply 400V-3N-50Hz | | VLSCT2A | Power supply 400V-3N-50Hz + circuit breaker | VLSHT2A | Power supply 400V-3N-50Hz + circuit breaker | | VLSCT4A | Power supply 400V-3-50Hz | VLSHT4A | Power supply 400V-3-50Hz | | VLSCT5A | Power supply 400V-3-50Hz + circuit breaker | VLSHT5A | Power supply 400V-3-50Hz + circuit breaker | | | | | | #### **CONFIGURATION OPTIONS** Electronic #### Water pump and accessories Absent LP OR double pump HP pump HP OR double pump LP pump with Viton seal LP OR double pump with Viton seal HP pump with Viton seal HP OR double pump with Viton seal LP inverter pump LP OR inverter double pump HP Inverter pump HP OR inverter double pump LP inverter pump with Viton seal LP inverter double pump with Viton seal HP inverter pump with Viton seal Water buffer tank 3 Absent Present #### Partial heat recovery Absent Included with pump free contact Air flow modulation Condensation control with high-head FC fans Condensation control by phase-cut fans Condensation control with EC fans Antifreezing kit 0 Absent Evaporator Evaporator, pump and expansion vessel Evaporator, pump, expansion vessel and tank Acoustic insulation and attenuation 0 Absent Compressor soundproof insulations Low-noise EC fans Compressor soundproof insulations + Low-noise EC fans Refrigerant pipework accessories 0 Absent Liquid separator at compressor intake (heat pump only). Mandatory on 243,456,546,576 Liquid separator in compressor intake + liquid injection for operation limit extension (only for heat pumps) Remote control / Serial communication 0 Absent RS485 connection port (Modbus protocol or Carel) BACNET IP/pCOWeb serial board BACNET IP / pCOWeb serial board + supervision software Remote simplified control panel mProcess remote control panel 10 Special coils / Protective treatments Copper-aluminium (heat pump only) Cataphoresis treatment on fins and coil carpentry Microchannel in Long Life Alloy (standard for chiller) Hydrophilic (heat pump only) Microchannel with E-coating (standard for chiller) Pre-painted fins with polyester paint (only heat pump) Copper-copper (heat pump only) Anti vibration shock mounts 11 Absent 0 Made of rubber With spring Outdoor coil trace heater 12 Absent Present (heat pump only) Onboard controller 13 Advanced | A | Outdoor finned coil heat exchanger protection filters | M | 0-10 V signal for external user pump control (on-board pump excluded) | |---|---|---|---| | В | Not in use | N | Compressor tandem/trio isolation valves | | C | Pair of couplings Victaulic | 0 | Anti-intrusion grille | | D | ON/OFF status of the compressors | P | Y-shaped filter | | E | Remote control for step capacity limit (advanced controller required) | Q | Night-time low-noise | | F | Configurable digital alarm board (advanced controller required) | R | Enabling 2nd set-point / external alarm signaling via digital input | | G | Soft starter | S | Hot-wire electronic flow switch | | Н | Power factor capacitors | T | Energy metering kit | | I | Refrigerant sensors | U | Covering panels V | | L | Water pipes additional insulation | V | Set-point modification with 4-20mA signal | #### EXTENDED OPERATING RANGE The generous sizing of the coils combined with innovative technological solutions makes it possible for VLS to operate in very different climaticenvironments. The operating range may vary depending on the model; always refer to the technical documentation for more information. #### **FUNCTIONS** #### **Very low GWP refrigerant** Use of R454B refrigerant with low environmental impact. R454B is a next-generation A2L refrigerant with a GWP of only 467, one of the lowest on the market. This GWP value ensures that the VLS range complies with the gradual reduction of quotas of greenhouse refrigerants in the European market required by the F-GAS regulation, down to the stricter limits foreseen for 2030 #### **Scroll compressors** The scroll-type compressors designed to work with R454B, which can be sound insulated, include internal thermal protection of the windings and are installed on special anti-vibration supports. The scroll-type compressors are equipped with an IDV valve. The IDV intermediate delivery valve technology allows the compressor to avoid losses caused by overcompression and, consequently, the additional work the motor has to perform in partial-load operation, thus saving energy and improving seasonal and partial-load efficiency from 3% to 10%. #### **Liquid injection** Units can be supplied with a hot liquid by-pass to stabilise the discharge temperature of the compressor under the most critical operating conditions. Thanks to the injection of hot liquid at the evaporator outlet, it is possible to raise the evaporation pressure, thereby ensuring that the duty point remains within the compressor envelope even beyond conventional limits; in fact, hot water production up to 56°C is guaranteed. To prevent liquid intake, this option includes a liquid/gas separator installed on the common branch before the tandem or trio compressor systems. #### Microchannel The entire Chiller range has microchannel coils as a standard feature. The large heat exchange surface, the absence of a copper-aluminum interface, and the perfect flow of air make it possible to achieve the same performance while reducing the refrigerant charge by up to 40%, with obvious benefits from an ecological point of view. Microchannel coils Galletti always feature surface treatment as a standard feature in order to provide maximum safety, even in harsh environments. #### MAIN COMPONENTS #### **Structure** The range is designed modularly, replicating the optimized structure of V configuration condensing coils and fans. Its design ensures stability, sturdiness even during the most critical phases (such as transportation), and maximum accessibility to components in every VLS unit. #### **Electronic valve** It is standard on the entire range and offers greater responsiveness during transients. The electronics also manage the synergistic operation of the compressors and the valve, thereby making it possible to vary overheating and maximize efficiency at partial loads. #### Safety procedures in case of refrigerant leakage As an option feature, the units are equipped with leak detection sensors in the electrical control board and near the cooling circuit. The microprocessor manages the procedures for securing and shutting down the unit in case of refrigerant leakage, also making it possible to divert the power supply of the control unit that collects the information from the leak sensors on a low-voltage emergency line. This function allows the complete disconnection of the power to the unit during maintenance operations, while leaving all the safety systems enabled. #### **Economy - low noise function** Based on time slots or no-voltage contact, this function makes it possible to reduce the maximum speed of fans and the number of compressors that can be activated. This operation is especially useful during the night phase, when the power required is very low, and the unit can operate at a reduced level, thus lowering the noise level during a sensitive time period. #### Low noise execution The units can be supplied in a low-noise version, with silencing housings and reduced speed BLDC fans. This configuration, together with the night-time attenuation function, significantly reduces the sound power level. #### Primary heat pump management In case of a decoupled circuit, it is possible, via remote sensor, to switch off the primary circuit's pumps, when permitted, due to low thermal load. In this manner a further reduction in pumping costs is achieved. ## WATER CHILLERS RATED TECHNICAL DATA VLS C | VLS C | | | 162 | 202 | 234 | 243 | 254 | 274 | 314 | |--------------------------------------|--------|-----------------|-------|-------|-------|-----------|-------|-------|-------| | Power supply | | V-ph-Hz | | | | 400-3N-50 | | | | | Cooling capacity | (1)(E) | kW | 160 | 210 | 232 | 238 | 250 | 274 | 315 | | Total power input | (1)(E) | kW | 58,3 | 67,3 | 73,9 | 80,5 | 85,0 | 102 | 116 | | EER | (1)(E) | | 2,75 | 3,12 | 3,14 | 2,96 | 2,94 | 2,69 | 2,71 | | SEER | (2)(E) | | 4,25 | 4,68 | 4,57 | 4,52 | 4,33 | 4,27 | 4,25 | | Water flow | (1) | I/h | 27516 | 36134 | 39882 | 40923 | 42982 | 47115 | 54152 | | Water pressure drop | (1)(E) | kPa | 26 | 28 | 45 | 31 | 50 | 47 | 52 | | Available pressure head - LP pumps | (1) | kPa | 118 | 150 | 120 | 136 | 107 | 99 | 83 | | Available pressure head - HP pumps | (1) | kPa | 213 | 205 | 176 | 192 | 164 | 200 | 183 | | Maximum current absorption | | A | 123 | 156 | 176 | 181 | 192 | 214 | 244 | | Start up current | | A | 387 | 422 | 396 | 439 | 404 | 476 | 512 | | Startup current with soft starter | | A | 301 | 335 | 331 | 359 | 339 | 393 | 425 | | Compressors / circuits | | | 2/1 | 2/1 | 4/2 | 3/1 | 4/2 | 4/2 | 4/2 | | Buffer tank volume | | dm ³ | 180 | 350 | 350 | 350 | 350 | 350 | 350 | | Sound power level | (3)(E) | dB(A) | 89 | 91 | 89 | 92 | 90 | 91 | 91 | | Sound power level, low-noise version | (3) | dB(A) | 85 | 85 | 84 | 85 | 84 | 84 | 85 | | Sound power level quiet version | (3) | dB(A) | 83 | 83 | 82 | 83 | 82 | 82 | 83 | | Weight without options | | kg | 1047 | 1744 | 1876 | 1797 | 1783 | 1982 | 1994 | | Maximum transport weight | | kg | 1188 | 1915 | 2048 | 1946 | 1984 | 2125 | 2137 | | VLSC | | | 344 | 374 | 414 | 456 | 546 | 576 | |--------------------------------------|--------|---------|-------|-------|-------|-------|-------|--------| | Power supply | | V-ph-Hz | | | 400- | 3N-50 | | | | Cooling capacity | (1)(E) | kW | 344 | 370 | 420 | 475 | 545
 590 | | Total power input | (1)(E) | kW | 118 | 125 | 126 | 162 | 179 | 201 | | EER | (1)(E) | | 2,92 | 2,96 | 3,33 | 2,93 | 3,04 | 2,94 | | SEER | (2)(E) | | 4,43 | 4,33 | 4,78 | 4,61 | 4,64 | 4,62 | | Water flow | (1) | l/h | 59124 | 63602 | 72187 | 81639 | 93660 | 101397 | | Water pressure drop | (1)(E) | kPa | 36 | 39 | 30 | 35 | 41 | 46 | | Available pressure head - LP pumps | (1) | kPa | 123 | 116 | 155 | 133 | 157 | 130 | | Available pressure head - HP pumps | (1) | kPa | 228 | 222 | 213 | 190 | 199 | 173 | | Maximum current absorption | | Α | 263 | 278 | 312 | 362 | 415 | 460 | | Start up current | | Α | 537 | 550 | 585 | 624 | 642 | 734 | | Startup current with soft starter | | Α | 447 | 462 | 496 | 544 | 548 | 648 | | Compressors / circuits | | | 4/2 | 4/2 | 4/2 | 6/2 | 6/2 | 6/2 | | Buffer tank volume | | dm³ | 550 | 550 | 700 | 700 | 850 | 850 | | Sound power level | (3)(E) | dB(A) | 93 | 93 | 94 | 94 | 95 | 95 | | Sound power level, low-noise version | (3) | dB(A) | 87 | 87 | 88 | 87 | 89 | 89 | | Sound power level quiet version | (3) | dB(A) | 85 | 85 | 86 | 85 | 87 | 87 | | Weight without options | | kg | 2557 | 2563 | 3233 | 3499 | 4090 | 4144 | | Maximum transport weight | | kg | 2825 | 2832 | 3423 | 3689 | 4375 | 4429 | Outdoor air temperature 35°C, water temperature 12°C / 7°C (EN14511:2022) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Sound power level measured according to ISO 9614 EUROVENT certified data ## HEAT PUMPS RATED TECHNICAL DATA VLS H | VLSH | | | 162 | 202 | 234 | 243 | 254 | 274 | 314 | |--------------------------------------|--------|-----------------|-------|-------|-------|-----------|-------|-------|-------| | Power supply | | V-ph-Hz | | | | 400-3N-50 | | | | | Cooling capacity | (1)(E) | kW | 160 | 210 | 232 | 236 | 250 | 274 | 310 | | Total power input | (1)(E) | kW | 58,5 | 67,7 | 73,9 | 80,5 | 85,0 | 102 | 116 | | EER | (1)(E) | | 2,73 | 3,10 | 3,14 | 2,93 | 2,94 | 2,69 | 2,67 | | SEER | (2)(E) | | 4,13 | 4,56 | 4,41 | 4,45 | 4,22 | 4,17 | 4,16 | | Water flow | (1) | I/h | 27525 | 36122 | 39897 | 40581 | 42992 | 47115 | 53291 | | Water pressure drop | (1)(E) | kPa | 26 | 28 | 45 | 30 | 50 | 47 | 50 | | Available pressure head - LP pumps | (1) | kPa | 117 | 151 | 121 | 137 | 108 | 99 | 82 | | Available pressure head - HP pumps | (1) | kPa | 213 | 206 | 178 | 193 | 165 | 200 | 182 | | Heating capacity | (3)(E) | kW | 167 | 224 | 256 | 249 | 264 | 290 | 330 | | Total power input | (3)(E) | kW | 56,4 | 68,2 | 77,9 | 83,5 | 82,5 | 99,4 | 112 | | COP | (3)(E) | | 2,96 | 3,28 | 3,29 | 2,98 | 3,20 | 2,92 | 2,95 | | SCOP | (2)(E) | | 3,56 | 3,50 | 4,01 | 3,44 | 4,04 | 3,71 | 3,87 | | Heating energy efficiency class | (4)(E) | | A+ | A+ | A++ | A+ | A++ | A+ | A++ | | Water flow | (3) | I/h | 28975 | 38872 | 44430 | 43208 | 45822 | 50334 | 57286 | | Water pressure drop | (3)(E) | kPa | 29 | 32 | 55 | 34 | 56 | 53 | 57 | | Available pressure head - LP pumps | (3) | kPa | 98 | 139 | 108 | 121 | 91 | 78 | 54 | | Available pressure head - HP pumps | (3) | kPa | 193 | 194 | 164 | 177 | 148 | 178 | 153 | | Maximum current absorption | | Α | 123 | 156 | 176 | 181 | 192 | 214 | 244 | | Start up current | | Α | 387 | 422 | 396 | 439 | 404 | 476 | 512 | | Startup current with soft starter | | Α | 301 | 335 | 331 | 359 | 339 | 393 | 425 | | Compressors / circuits | | | 2/1 | 2/1 | 4/2 | 3/1 | 4/2 | 4/2 | 4/2 | | Buffer tank volume | | dm ³ | 180 | 350 | 350 | 350 | 350 | 350 | 350 | | Sound power level | (5)(E) | dB(A) | 89 | 91 | 89 | 92 | 90 | 91 | 91 | | Sound power level, low-noise version | (5) | dB(A) | 85 | 85 | 84 | 85 | 84 | 84 | 85 | | Sound power level quiet version | (5) | dB(A) | 83 | 83 | 82 | 83 | 82 | 82 | 83 | | Weight without options | | kg | 1155 | 2040 | 2172 | 2126 | 1969 | 2174 | 2188 | | Maximum transport weight | | kg | 1296 | 2241 | 2374 | 2162 | 2149 | 2345 | 2360 | ⁽¹⁾ Outdoor air temperature 35°C, water temperature 12°C / 7°C (EN14511:2022) ⁽¹⁾ outdoor air temperature 35°C, water temperature 12°C / /°C (EM14511:2022) (2) n efficiency values for heating and cooling are respectively calculated by the fethical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. (3) Outdoor air temperature dry bulb 7°C / wet bulb 6°C, water temperature 40°C / 45°C (EN14511:2022) (4) Seasonal energy efficiency class for LOW TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++ → D] (5) Sound power level measured according to ISO 9614 (6) TUPOUTIC contributed dates EUROVENT certified data #### HEAT PUMPS RATED TECHNICAL DATA VLS H | VLS H | | | 344 | 374 | 414 | 456 | 546 | 576 | |--------------------------------------|--------|---------|-------|-------|-------|-------|-------|--------| | Power supply | | V-ph-Hz | | | 400-3 | 3N-50 | | | | Cooling capacity | (1)(E) | kW | 343 | 366 | 418 | 472 | 543 | 585 | | Total power input | (1)(E) | kW | 118 | 126 | 128 | 162 | 179 | 205 | | EER | (1)(E) | | 2,91 | 2,90 | 3,26 | 2,91 | 3,03 | 2,85 | | SEER | (2)(E) | | 4,35 | 4,23 | 4,69 | 4,60 | 4,61 | 4,60 | | Water flow | (1) | l/h | 58960 | 62911 | 71831 | 81112 | 93327 | 100545 | | Water pressure drop | (1)(E) | kPa | 36 | 38 | 30 | 35 | 41 | 45 | | Available pressure head - LP pumps | (1) | kPa | 124 | 117 | 157 | 134 | 159 | 132 | | Available pressure head - HP pumps | (1) | kPa | 229 | 223 | 214 | 191 | 201 | 175 | | Heating capacity | (3)(E) | kW | 370 | 391 | 443 | 505 | 572 | 627 | | Total power input | (3)(E) | kW | 115 | 125 | 129 | 164 | 178 | 196 | | COP | (3)(E) | | 3,21 | 3,13 | 3,42 | 3,08 | 3,21 | 3,20 | | SCOP | (2)(E) | | 3,68 | 3,72 | 3,65 | 3,42 | 3,65 | 3,80 | | Heating energy efficiency class | (4)(E) | | | | A | + | | | | Water flow | (3) | l/h | 64235 | 67894 | 76926 | 87689 | 99325 | 108888 | | Water pressure drop | (3)(E) | kPa | 42 | 44 | 34 | 40 | 46 | 52 | | Available pressure head - LP pumps | (3) | kPa | 109 | 102 | 143 | 113 | 130 | 95 | | Available pressure head - HP pumps | (3) | kPa | 214 | 207 | 200 | 168 | 172 | 138 | | Maximum current absorption | | Α | 263 | 278 | 312 | 362 | 415 | 460 | | Start up current | | Α | 537 | 550 | 585 | 624 | 642 | 734 | | Startup current with soft starter | | Α | 447 | 462 | 496 | 544 | 548 | 648 | | Compressors / circuits | | | 4/2 | 4/2 | 4/2 | 6/2 | 6/2 | 6/2 | | Buffer tank volume | | dm³ | 550 | 550 | 700 | 700 | 850 | 850 | | Sound power level | (5)(E) | dB(A) | 93 | 93 | 94 | 94 | 95 | 95 | | Sound power level, low-noise version | (5) | dB(A) | 87 | 87 | 88 | 87 | 89 | 89 | | Sound power level quiet version | (5) | dB(A) | 85 | 85 | 86 | 85 | 87 | 87 | | Weight without options | | kg | 2869 | 2876 | 3623 | 3889 | 4641 | 4697 | | Maximum transport weight | | kg | 2909 | 2930 | 3813 | 4079 | 4926 | 4982 | ⁽¹⁾ Outdoor air temperature 35°C, water temperature 12°C / 7°C (EN14511:2022) Uutdoor air temperature 35°C, water temperature 12°C / °C (EN14511:2022) n efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Outdoor air temperature dry bulb °°C / wet bulb 6°C, water temperature 40°C / 45°C (EN14511:2022) Seasonal energy efficiency class for LOW TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++ → D] Sound power level measured according to ISO 9614 FUNDALITY cottified data ⁽E) EUROVENT certified data #### LEGEND | 1 | Water inlet Victaulic 3" | |----|--| | 2 | Water outlet, evaporator only Victaulic 3" | | 3 | Water outlet pump and/or tank Victaulic 3" | | 4 | Heat exchanger inlet 2" M | | 5 | Heat exchanger outlet 2" M | | 6 | Outlet safety valve 1"M | | 7 | Lifting points | | 8 | Vibration dumpers | | 9 | User interface | | 10 | Power supply input | | | | ## DIMENSIONAL DRAWINGS #### LEGEND | 1 | Water inlet Victaulic 3" | |----|--| | 2 | Water outlet, evaporator only Victaulic 3" | | 3 | Water outlet pump and/or tank Victaulic 3" | | 4 | Heat exchanger inlet 2" M | | 5 | Heat exchanger outlet 2" M | | 6 | Outlet safety valve 1" M | | 7 | Lifting points | | 8 | Vibration dumpers | | 9 | User interface | | 10 | Power supply input | | | | 7 8 9 10 Lifting points User interface Vibration dumpers Power supply input #### DIMENSIONAL DRAWINGS 10 Power supply input #### LEGEND | 5 | Heat exchanger inlet 2" M Heat exchanger outlet 2" M Outlet safety valve 1" M | |---|---| | | | | 4 | Heat exchanger inlet 2" M | | | Ut | | 3 | Water outlet pump and/or tank Victaulic 4" | | 2 | Water outlet, evaporator only Victaulic 4" | | 1 | Water inlet Victaulic 4" | | LEGEN | ID | |-------|----------------------------| | 1 | Water inlet Victaulic 4" | | 2 | Water outlet Victaulic 4" | | 3 | Heat exchanger inlet 2" M | | 4 | Heat exchanger outlet 2" M | | 5 | Outlet safety valve 1"M | | 6 | Lifting points | | 7 | Vibration dumpers | | 8 | User interface | | 9 | Power supply input | | LEGEN | D | |-------|----------------------------| | 1 | Water inlet Victaulic 4" | | 2 | Water outlet Victaulic 4" | | 3 | Heat exchanger inlet 2" M | | 4 | Heat exchanger outlet 2" M | | 5 | Outlet safety valve 1"M | | 6 | Lifting points | | 7 | Vibration dumpers | | 8 | User
interface | | 9 | Power supply input | | LEGE | ND | |------|----------------------------| | 1 | Water inlet Victaulic 5" | | 2 | Water outlet Victaulic 5" | | 3 | Heat exchanger inlet 2" M | | 4 | Heat exchanger outlet 2" M | | 5 | Outlet safety valve 1"M | | 6 | Lifting points | | 7 | Vibration dumpers | | 8 | User interface | | 9 | Power supply input | ## Outdoor packaged unit ## **GLE 650 - 1130 kW** Heating/ Cooling gas leak R-454B etection refrigerant Scroll compressor #### PI US - » High efficiency when operating at partial load - » Electronically controlled electric expansion valve - » Incorporable hydronic kit - » High configurability and wide availability of accessories - » Compact dimensions - » Use of low GWP refrigerant - » 3 different acoustic configurations ## Multi-scroll solutions for reliability and high efficiency at partial loads with low GWP refrigerant GLE is Galletti's range of air-cooled big capacity packaged chillers and heat pumps for outdoor installation featuring R454B refrigerant. R454B is a next generation A2L refrigerant with a GWP of only 467, one of the lowest on the market. This GWP value ensures that the GLE range complies with the gradual reduction of greenhouse gas emissions required by the F-GAS regulation, down to the stricter limits foreseen for 2030. The range consists of 6 models with cooling capacities from 650 to 1130 kW, available in cooling only or reversible heat pump versions. The sizing and choice of individual components is intended to reduce energy consumption with a view to saving energy not only on each individual chiller but on the entire system. The high number of capacity control steps allows the unit to adapt its power to the actual needs of the system, with particular gains in efficiency under partial load conditions compared to traditional screw compressors. The unit is suitable for being installed in environments where noise abatement is fundamentally important, thanks to the possibility of choosing from three sound-proofing set-ups. The use of top quality components at the cutting edge of technology in the cooling, hydraulic, and electrical systems makes GLE chillers state of the art in terms of efficiency, reliability, and operating limits. In fact, the ability to produce water from -10°C to 55°C, and full load operation with external air from -10°C to 45°C. The "W" configuration of the finned block heat exchangers makes it possible to have a large amount of exchange surface with a small footprint, thereby resulting in machines with high power density. #### MAIN COMPONENTS #### Structure Painted galvanised sheet steel structure for an effective resistance to corrosive agents. Compressor compartment located below the finned heat exchangers to reduce the dimensions without compromising performance. #### Compressors Hermetic scroll compressors driven by electric motors and connected in tandem or trio version to maximize efficiency at partial loads. #### **Electronically controlled** electric expansion valve It represents, together with the compressor, the key component for the proper functioning of the unit. It optimizes the machines' operation at partial loads and increases the average seasonal energy #### Heat exchangers Finned heat exchangers with copper pipes and aluminum fins in #### **Very low GWP refrigerant** Use of R454B refrigerant with low environmental impact. R454B is a next-generation A2L refrigerant with a GWP of only 467, one of the lowest on the market. This GWP value ensures the range complies with the gradual reduction of quotas of greenhouse refrigerants in the European market required by the F-GAS regulation, down to the stricter limits foreseen for 2030 #### **Hydraulic kit** Option of choosing one or two pumps at standard or high head to meet system requirements, suitable for operation with glycol up to 30% and can be combined with a heat buffer tank. | CONFIGURATOR | | | | | | | | | | | | | | | |---|----------|-------|---|---|---|---|---|---|---|---|---|----|----|----| | The models are completely configurable by selecting the | Version | Field | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | version and the options. To the right is shown an example of configuration. | GLE658CL | | 0 | В | 4 | S | 0 | C | 0 | 2 | 0 | 0 | M | 3 | To verify the compatibility of the options, use the selection software or the price list. #### **AVAILABLE VERSIONS** | Only cooling version | ons | Heat pump versions | | |----------------------|---------------------------|--------------------|---------------------------------| | GLECS | Standard execution | GLEĤS | Reversible, standard execution | | GLECL | Low noise execution | GLEHL | Reversible, low noise execution | | GLECQ | Super low noise execution | GLEHQ | Reversible, quite execution | | | | | | #### CONFIGURATION OPTIONS | | | rowei suppiy | |---|---|---------------------------------| | | 0 | 400/3/50 + N | | | 1 | 400V-3-50Hz + transformer | | | 2 | 400/3/50 + N + Circuit breakers | | | 3 | 400/3/50 + circuit breakers | | 2 | | Refrigerant | | | В | R454B | | 3 | | User side water pump | - Absent Single pump - Oversize single pump - Double pump in timed rotation - Oversize double pump in timed rotation Single modulating pump (electr. Flow swtich included) - Single HP modulating pump (electr. Flow swtich included) - Double modulating pump (standby rotation) (electr. Flow swtich included) - Double HP modulating pump (standby rotation) (electr. Flow swtich included) - Water buffer tank - Absent - Inertial tank on user side - Partial heat recovery (condensation control mandatory) - Absent - Desuperheater (recovery of 40% of Pf in rated conditions) Air flow modulation - Condensation control by phase-cut fans - Condensation control with "EC brushless" electronic control fans Antifreezing kit - Absent - Protecting the water exchanger (standard machine) - Protecting the water exchanger and pump - Protecting the water exchanger, pump and tank - - Remote communication Absent 8 9 - RS485 serial card (Modbus or Carel protocol) - BACNET IP/pCOWeb serial board BACNET IP / pCOWeb serial board + supervision software - Special coils / Protective treatments - Standard - Epoxy pre-painted fin and overall painting Cataphoresis - Hydrophilic - Copper / copper Packing - 10 - Standard - Wooden cage - Wooden crate - Anti vibration shock mounts - Rubber vibration dampers at the base of the unit - Spring vibration dampers at the base of the unit M - 12 Maintenance kit Absent - Shut-off valves on compressor tandem / trio - 13 Documentation language - German French - G - English Italian - Dutch - Polish - Russian - Spanish | ACC | ESSORIES | | | |-----|---|---|---| | Α | Power factor capacitors | L | Filter shut-off kit (solenoid and tap on liquid line) | | В | Soft starter | М | Special cable according to VDE regulation | | C | Service kit (advanced controller required) | N | Remote control panel for programmable microprocessor | | D | Pair of couplings Victaulic | P | Outdoor finned coil heat exchanger protection grille | | E | ON/OFF status of the compressors | Q | Finned battery metal filters | | F | Remote control for step capacity limit (advanced controller required) | R | Y-shaped water filter (loose delivered) | | G | Configurable digital alarm board (advanced controller required) | S | Unit without refrigerant | | Н | Set point compensation outdoor temperature probe | T | Measurement and limitation of the absorbed current | | 1 | Refrigerant pressure gauges | | | ## GLE C WATER CHILLERS RATED TECHNICAL DATA | GLE | | | 658 | 748 | 818 | 900 | 942 | 1072 | |--------------------------------------|-----|---------|--------|--------|--------|---------|--------|--------| | Power supply | | V-ph-Hz | | | 400/3 | +N / 50 | | | | Cooling capacity | (1) | kW | 654 | 752 | 818 | 958 | 996 | 1132 | | Total power input | (1) | kW | 224 | 250 | 285 | 316 | 328 | 397 | | EER | (1) | | 2,92 | 3,00 | 2,87 | 3,03 | 3,04 | 2,85 | | SEER | (2) | | 4,88 | 4,97 | 4,94 | 5,09 | 5,32 | 5,27 | | Water flow | (1) | l/h | 112293 | 129189 | 140534 | 164558 | 171168 | 194427 | | Water pressure drop | (1) | kPa | 21 | 24 | 28 | 32 | 34 | 49 | | Available pressure head - LP pumps | (1) | kPa | 234 | 189 | 154 | 199 | 191 | 146 | | Available pressure head - HP pumps | (1) | kPa | 263 | 286 | 272 | 295 | 287 | 244 | | Maximum current absorption | | Α | 527 | 666 | 647 | 749 | 787 | 907 | | Start up current | | Α | 620 | 812 | 807 | 873 | 800 | 987 | | Compressors / circuits | | | 8/4 | 8/4 | 8/4 | 10/4 | 12/4 | 12/4 | | Buffer tank volume | | dm³ | 1040 | 1040 | 1040 | 1040 | 1040 | 1040 | | Sound power level | (3) | dB(A) | 99 | 99 | 99 | 100 | 100 | 100 | | Sound power level, low-noise version | (3) | dB(A) | 97 | 97 | 97 | 98 | 98 | 98 | | Sound power level quiet version | (3) | dB(A) | 96 | 96 | 96 | 97 | 97 | 97 | | Weight without options | | kg | 4994 | 5564 | 5564 | 6428 | 6630 | 7440 | ⁽¹⁾ Outdoor air temperature 35°C, water temperature 12°C / 7°C (EN14511:2022) ⁽²⁾ η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. (3) Sound power level measured according to ISO 9614 ## GLE H HEAT PUMPS RATED TECHNICAL DATA | GLE | | | 658 | 748 | 818 | 900 | 942 | 1072 | |--------------------------------------|-----|-----------------|--------|--------|---------|---------|--------|--------| | Power supply | | V-ph-Hz | | | 400 / 3 | +N / 50 | | | | Cooling capacity | (1) | kW | 654 | 749 | 812 | 937 | 977 | 1170 | | Total power input | (1) | kW | 224 | 252 | 287 | 328 | 339 | 382 |
 EER | (1) | | 2,92 | 2,96 | 2,83 | 2,86 | 2,88 | 3,06 | | SEER | (2) | | 4,88 | 4,91 | 4,87 | 4,78 | 5,03 | 5,40 | | Water flow | (1) | I/h | 112293 | 128628 | 139550 | 161049 | 167925 | 200993 | | Water pressure drop | (1) | kPa | 21 | 24 | 27 | 31 | 33 | 46 | | Available pressure head - LP pumps | (1) | kPa | 234 | 190 | 157 | 204 | 196 | 139 | | Available pressure head - HP pumps | (1) | kPa | 263 | 286 | 273 | 300 | 292 | 238 | | Heating capacity | (3) | kW | 666 | 746 | 821 | 995 | 1030 | 1190 | | Total power input | (3) | kW | 211 | 238 | 264 | 310 | 322 | 382 | | COP | (3) | | 3,15 | 3,13 | 3,11 | 3,21 | 3.20 | 3,12 | | Water flow | (3) | I/h | 115645 | 129601 | 142675 | 172793 | 178947 | 206697 | | Water pressure drop | (3) | kPa | 22 | 23 | 27 | 34 | 37 | 47 | | Available pressure head - LP pumps | (3) | kPa | 223 | 187 | 147 | 184 | 174 | 124 | | Available pressure head - HP pumps | (3) | kPa | 257 | 284 | 268 | 280 | 270 | 222 | | Maximum current absorption | | Α | 527 | 591 | 647 | 757 | 795 | 922 | | Start up current | | Α | 620 | 759 | 807 | 881 | 808 | 1002 | | Buffer tank volume | | dm ³ | 1040 | 1040 | 1040 | 1040 | 1040 | 1040 | | Compressors / circuits | | | 8/4 | 8/4 | 8/4 | 10/4 | 12/4 | 12/4 | | Sound power level | (4) | dB(A) | 99 | 99 | 99 | 100 | 100 | 101 | | Sound power level, low-noise version | (4) | dB(A) | 97 | 97 | 97 | 98 | 98 | 99 | | Sound power level quiet version | (4) | dB(A) | 96 | 96 | 96 | 97 | 97 | 98 | | Length | | mm | 5060 | 6635 | 6635 | 8635 | 8635 | 10635 | | Depth | | mm | 2256 | 2256 | 2256 | 2256 | 2256 | 2256 | | Height | | mm | 2650 | 2650 | 2650 | 2650 | 2650 | 2650 | | Weight without options | | kg | 5196 | 5506 | 5642 | 7200 | 7508 | 8840 | Outdoor air temperature 35°C, water temperature 12°C / 7°C (EN14511:2022) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Outdoor air temperature dry bulb 7°C / wet bulb 6°C, water temperature 40°C / 45°C (EN14511:2022) Sound power level measured according to ISO 9614 ## Motor-driven condensing units MTE ## Outdoor motor-driven condensing units # MTE 5 - 166 kW compressor Refrigerant Heating/ Split version Cooling ## Efficiency and compactness for commercial air conditioning MTE Air-cooled motocondensing packaged units are designed for outdoor installation in both residential and industrial applications. The range uses R410A refrigerant, which assures high levels of performance with relatively low energy consumption and features 26 models in the chiller version, with cooling capacities ranging from 5 to 166 kW and 8 models in the heat pump version, with heating capacities ranging from 38 to 161 kW. These units are employed in 2-section systems, which are normally connected to air evaporator coils in ducted air conditioning units. Its extreme compactness facilitates the handling and installation of the units, even in situations with reduced installation space. The equipment compartment is completely sealed and may be accessed on 3 sides thanks to easy-to-remove panels that greatly simplify maintenance and/or inspection. On request sound insulation makes it possible to further reduce the unit's noise emissions. The cooling circuit is completely precharged with nitrogen. The liquid receiver (available as an optional accessory) compensates for variations in the load that occur in the system when the operating conditions change (day/ night - summer/winter). Its use is also recommended for long sections of the circuit. ## **PLUS** - » Compact dimensions - » Tandem solutions - » Remote connectivity with the most common protocols - » Available heating pump version on request MTE condensing units are included in typical commercial applications where it is necessary to combine them with air evaporating units. #### MAIN COMPONENTS #### **Structure** Painted galvanised sheet steel structure (RAL9002) for an effective resistance to corrosive agents. Fastening devices are made of non-oxidizable materials, or carbon steel that has undergone surface-passivating treatments. #### Fan drive assembly Axial fans with airfoil blades made of plastic-aluminum composite, connected to an electric motor with external rotor. The condensation control system continuously and automatically regulates the fan #### Compressor Hermetic scroll type (rotary up to 7 kW), housed in a completely closed compartment that can be sound insulated. There is a heating element (standard feature) on the compressor's cover to counter oil dilution. #### **Electric control board** Electrical control panel with microprocessor controller accessible from the outside and low-voltage output for dry-contact thermostatic control of the unit, external disconnect switch, phase sequence control. #### **Cooling circuit** - · Dehydrating filter - · Flow indicator with humidity indicator - · High and low pressure switch - Safety valve - · Shut-off valves on the liquid and gas line - · Nitrogen precharge under pressure - Thermostatic valve, refrigerant pressure gauges, and liquid receiver as optional accessories #### Heat exchanger Made of 8 mm diameter copper pipes and aluminium fins, generously sized. A protection grille is available as an accessory. | CONFIGURATOR | | | | | | | | | | | | | | | | |--|---|-------|---|---|---|---|---|---|---|---|---|----|----|----|----| | he models are completely configurable by selecting the version and | Version | Field | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | the options. To the right is shown an example of configuration. | MTE074C0AA | | 0 | 2 | S | 0 | C | 1 | 1 | М | 0 | 0 | G | 1 | 1 | | | To verify the compatibility of the options, use the selection software or the price list. | | | | | | | | | | | | | | | ## **AVAILABLE VERSIONS** Only cooling versions Power supply 400V-3N-50Hz MTÉ..COAA MTE..CMAA Power supply 230V-1-50Hz **Heat pump versions** MTE..HOAA Power supply 400V-3N-50Hz #### CONFIGURATION OPTIONS - **Expansion valve** - Absent (not available for heat pump) - Electronic - Mechanical - Liquid receiver - Absent (not available for heat pump) - Present with valve - Refrigerant circuit accessories 3 - Absent (not available for heat pump) Solenoid valve - Partial heat recovery 0 Absent - 5 - Air flow modulation Absent - Condensation control by phase-cut fans (heat pump mandatory) - Phase sequence switch - Absent (not available for heat pump) - Present (only 400 V 3 N 50 Hz) - Acoustic insulation and attenuation - 0 - Compressor compartment acoustic insulation - Compressor sound blanket - Compressor compartment acoustic insulation and sound blanket - Refrigerant pipework accessories - 0 Absent - M - Refrigerant pressure gauges Remote control / Serial communication - Absent 9 - RS485 serial board (Carel / Modbus protocol) - Remote simplified user panel - 10 Special coils / Protective treatments - Standard - Pre-painted fins with polyester paint Cataphoresis treatment on fins and coil carpentry - Hydrophilic - Copper-copper - Outdoor finned coil heat exchanger protection 11 - Absent - Selected - 12 - Compressors options Absent (not available for heat pump) - Outdoor coil trace heater (heat pump) - Soft starter - Power factor capacitors - $Power \ factor \ capacitors + soft \ starter$ - Outdoor coil trace heater (heat pump) + Rephasing capacitors - 13 Onboard controller | ACC | ESSORIES | | | | |-----|------------------------------------|---|--|--| | A | Rubber anti vibration shock mounts | C | Mechanical and unidirectional remote valve KIT | | | В | Spring anti vibration shock mounts | | | | # **Motor-driven condensing units MTE** ## RATED TECHNICAL DATA MOTOR-DRIVEN CONDENSING UNIT MTE C | MTEC | | | 005M | 007M | 009 | 009M | 010 | 010M | 012 | 013 | | | |------------------------------|-----|---------|--------------|--------------|---------------|--------------|---------------|--------------|---------------|---------------|--|--| | Power supply | | V-ph-Hz | 230 - 1 - 50 | 230 - 1 - 50 | 400 - 3N - 50 | 230 - 1 - 50 | 400 - 3N - 50 | 230 - 1 - 50 | 400 - 3N - 50 | 400 - 3N - 50 | | | | Cooling capacity | (1) | kW | 5,40 | 7,16 | 9,04 | 8,84 | 9,66 | 9,66 | 12,5 | 13,7 | | | | Total power input | (1) | kW | 1,71 | 2,24 | 2,90 | 3,59 | 3,27 | 3,27 | 4,24 | 4,31 | | | | EER | (1) | | 3,16 | 3,19 | 3,12 | 2,46 | 2,95 | 2,95 | 2,95 | 3,18 | | | | Maximum current absorption | | Α | 12,0 | 16,0 | 7,00 | 20,0 | 9,00 | 23,0 | 11,0 | 11,0 | | | | Start up current | | Α | 57 | 57 | 40 | 57 | 43 | 87 | 57 | 57 | | | | Compressors / circuits | | | | | | 1 | /1 | | | | | | | Sound power level | (2) | dB(A) | 67 | 67 | 67 | 67 | 69 | 69 | 69 | 70 | | | | Transport / operating weight | | kg | 72 | 85 | 94 | 94 | 165 | 165 | 168 | 170 | | | | MTEC | | | 015 | 018 | 021 | 024 | 029 | 033 | 038 | 042 | | | | Power supply | | V-ph-Hz | | | | 400 - | 3N - 50 | | | | | | | Cooling capacity | (1) | kW | 15,6 | 18,5 | 21,0 | 24,7 | 28,7 | 32,4 | 37,9 | 42,6 | | | | Total power input | (1) | kW | 5,36 | 6,59 | 7,40 | 8,28 | 10,1 | 11,7 | 12,2 | 13,3 | | | | EER | (1) | | 2,90 | 2,80 | 2,83 | 2,98 | 2,83 | 2,77 | 3,10 | 3,21 | | | | Maximum current absorption | | Α | 12,0 | 17,0 | 18,0 | 20,0 | 28,0 | 31,0 | 34,0 | 36,0 | | | | Start up current | | Α | 59 | 66 | 92 | 92 | 117 | 147 | 142 | 144 | | | | Compressors / circuits | | | | | | 1 | /1 | | | , | | | | Sound power level | (2) | dB(A) | 70 | 77 | 77 | 77 | 80 | 80 | 80 | 82 | | | | Transport / operating weight | | kg | 170 | 175 | 190 | 204 | 230 | 239 | 259 | 360 | | | | MTEC | | | 053 | 059 | 066 | 074 | 082 | 096 |
108 | 129 | | | | Power supply | | V-ph-Hz | | | | 400 - | - 3N - 50 | | | | | | | Cooling capacity | (1) | kW | 53,6 | 59,1 | 67,0 | 74,6 | 82,3 | 98,4 | 110 | 130 | | | | Total power input | (1) | kW | 15,9 | 17,9 | 20,9 | 23,3 | 27,0 | 32,2 | 38,3 | 39,5 | | | | EER | (1) | | 3,36 | 3,30 | 3,21 | 3,20 | 3,04 | 3,05 | 2,88 | 3,29 | | | | Maximum current absorption | | Α | 46,0 | 49,0 | 56,0 | 61,0 | 69,0 | 81,0 | 90,0 | 103 | | | | Start up current | | Α | 196 | 202 | 218 | 237 | 262 | 295 | 339 | 363 | | | | Power supply | | v-pn-Hz | 400 - 3N - 50 | | | | | | | | | | | |------------------------------|-----|---------|---------------|------|------|------|------|------|------|------|--|--|--| | Cooling capacity | (1) | kW | 53,6 | 59,1 | 67,0 | 74,6 | 82,3 | 98,4 | 110 | 130 | | | | | Total power input | (1) | kW | 15,9 | 17,9 | 20,9 | 23,3 | 27,0 | 32,2 | 38,3 | 39,5 | | | | | EER | (1) | | 3,36 | 3,30 | 3,21 | 3,20 | 3,04 | 3,05 | 2,88 | 3,29 | | | | | Maximum current absorption | | Α | 46,0 | 49,0 | 56,0 | 61,0 | 69,0 | 81,0 | 90,0 | 103 | | | | | Start up current | | Α | 196 | 202 | 218 | 237 | 262 | 295 | 339 | 363 | | | | | Compressors / circuits | | | | | | 2 | /1 | | | | | | | | Sound power level | (2) | dB(A) | 76 | 76 | 76 | 77 | 80 | 82 | 82 | 82 | | | | | Transport / operating weight | | kg | 525 | 530 | 540 | 545 | 650 | 700 | 700 | 700 | | | | | | | | | | | | , | , | | | | | | | MTFC | | | 142 | 163 | | | | | | | | | | | MTEC | | | 142 | 163 | |------------------------------|-----|---------|---------|---------| | Power supply | | V-ph-Hz | 400 - 3 | BN - 50 | | Cooling capacity | (1) | kW | 140 | 166 | | Total power input | (1) | kW | 44,0 | 57,1 | | EER | (1) | | 3,19 | 2,90 | | Maximum current absorption | | Α | 112 | 136 | | Start up current | | Α | 379 | 467 | | Compressors / circuits | | | 2/1 | 2/1 | | Sound power level | (2) | dB(A) | 82 | 83 | | Transport / operating weight | | kg | 910 | 970 | ⁽¹⁾ Outdoor air temperature 35° C, evaporation temperature 5° C2) Sound power level measured according to ISO 9614 ## RATED TECHNICAL DATA MOTOR-DRIVEN CONDENSING UNIT MTE H | MTE H | | | 038 | 053 | 074 | 096 | 108 | 129 | 142 | 163 | | | | |------------------------------|-----|---------|------|-----------|------|------|------|------|------|------|--|--|--| | Power supply | | V-ph-Hz | | 400-3N-50 | | | | | | | | | | | Cooling capacity | (1) | kW | 36,0 | 49,9 | 68,8 | 90,6 | 100 | 118 | 129 | 155 | | | | | Total power input | (1) | kW | 12,6 | 16,1 | 24,6 | 33,4 | 40,0 | 41,4 | 45,2 | 60,3 | | | | | EER | (1) | | 2,86 | 3,09 | 2,80 | 2,71 | 2,50 | 2,86 | 2,85 | 2,58 | | | | | Heating capacity | (2) | kW | 37,4 | 50,3 | 70,8 | 93,3 | 106 | 120 | 132 | 161 | | | | | Total power input | (2) | kW | 11,9 | 15,7 | 21,9 | 29,4 | 33,5 | 37,3 | 40,4 | 51,0 | | | | | COP | (2) | | 3,14 | 3,20 | 3,23 | 3,17 | 3,15 | 3,23 | 3,27 | 3,15 | | | | | Maximum current absorption | | A | 34,0 | 45,0 | 59,0 | 79,0 | 88,0 | 100 | 107 | 133 | | | | | Start up current | | A | 150 | 153 | 175 | 233 | 242 | 287 | 294 | 361 | | | | | Compressors / circuits | | | 1/1 | 2/1 | 2/1 | 2/1 | 2/1 | 2/1 | 2/1 | 2/1 | | | | | Sound power level | (3) | dB(A) | 77 | 77 | 78 | 81 | 81 | 82 | 82 | 85 | | | | | Transport / operating weight | | kg | 319 | 536 | 549 | 714 | 714 | 906 | 939 | 988 | | | | ⁽¹⁾ Outdoor air temperature 35°C, evaporation temperature 5° (2) Outdoor air temperature 7°C dry bulb / 6°C wet bulb, condensation temperature 45°C (3) Sound power level measured according to ISO 9614 # **Motor-driven condensing units MTE** ### MTE C 29 - 38 MTE H 38 #### LEGEND | 1 | MTE C. gas inlet Ø 35; MTE H gas inlet Ø 22 | |---|---| | 2 | Liquid outlet ø 16 | | 3 | Power supply ø 37 | | 4 | Electric control board | | 5 | Vibration dumpers | # **Motor-driven condensing units MTE** | L | E | G | E | N | D | |---|---|---|---|---|---| | | | | | | | | 1 | MTE C. gas inlet Ø 35; MTE H gas inlet Ø 22 | |---|---| | 2 | Liquid outlet ø 22 | | 3 | Power supply | | 4 | Electric control board | | 5 | Vibration dumpers | 5 Vibration dumpers # **Motor-driven condensing units MTE** | 1 | MTE C and MTE H 163: gas inlet Ø 42; MTE H 129 gas inlet Ø 35 | |---|---| | 2 | Liquid outlet ø 28 | | 3 | Power supply | | 4 | Electric control board | | 5 | Vibration dumpers | ### Motor-driven evaporating units LRE # Indoor or outdoor motor-driven evaporating unit # **LRE 40 kW - 680 kW** Scroll Refrigerant compressor R-410A gerant Cooling only Split version ### **PLUS** - » High seasonal efficiency values - » Production of cold water down to -8°C - » Electronic expansion valve - » Up to 6 compressors - » 1 or 2 cooling circuits - » Remote connectivity with the most common protocols - » Compact dimensions - » 3 different acoustic configurations - » Possibility of including an oil recovery kit for longdistance refrigeration lines within the unit # High efficiency split unit with low acoustic impact LRE is the new Galletti series of motor-driven evaporating unit for indoor or outdoors (with IP54 electrical panel option) installation, suitable for both air conditioning and industrial process applications. The range covers capacities from 40 kW up to a maximum of 750 kW and is characterised by reduced space requirements in order to facilitate access to technical compartments (for capacities of up to 560 kW, the width and height are less than 88 cm and 190 cm respectively). In order to increase the efficiency at partial loads, LRE models are provided with tandem or trio solutions (2 or 3 compressors on a single circuit) and equipped with electronic expansion valve as standard. Both single and dual circuit versions are available. The use of top quality components at the cutting edge of technology in the cooling and electrical systems makes LRE motor-driven evaporating units state of the art in terms of efficiency, reliability, and operating limits. In fact, the possibility of producing water down to -8 °C and condensing with maximum temperatures of 60 °C is guaranteed, in order to ensure minimum space requirements for the external fan unit even in the hottest climates. The high configurability of the series, which is in the DNA of Galletti, is guaranteed by 2 different versions, with and without closing panels, and 3 different acoustic configurations: standard, low noise, and super low noise, able to ensure a sound power level reduction of up to 12 dB(A). The range of the configuration available is completed by the possibility of producing hot water up to 60 °C at zero cost through partial heat recovery. It is also possible to provide an oil recovery kit inside the refrigerator compartment to prevent it from being trapped in the connection refrigerator lines between the indoor unit and the external condenser when the distances, due to the requirements of the installation site, are characterized by long lengths. Finally, the advanced microprocessor that regulates the operation of the unit allows: the control of a maxium 2 user-side pumps, on/off or modulating, the possibility of cascade connection up to 6 units and the control of the modulation of the air flow in the remote condenser unit with single or double 0-10V signal. The possibility of keeping the evaporator indoors means there is no need to add glycol to the water inside the system. In addition, you can keep all components requiring maintenance in an easily accessible room. #### MAIN COMPONENTS #### Structure Made in galvanised steel sheet with a polyester powder coating for outdoors. On request the compressor compartment is completely sealed and accessible on 3 sides thanks to easily removable panels that greatly simplify all maintenance and inspection operations. #### Compressori scroll Scroll-type compressors in a tandem or trio configuration equipped with IDV valve. The IDV intermediate delivery valve technology allows the compressor to avoid losses caused by overcompression and, consequently, the additional work the motor has to perform in partial-load operation, saving energy and improving seasonal and partial-load efficiency from 3% to 10%. #### **Heat exchangers** All units have heat exchangers with braze-welded AISI 316 austenitic stainless steel plates and connections made of AISI 316 L, characterised by a reduced carbon content to facilitate brazing. #### **Electronic microprocessor control** It allows complete management of the unit. The electronic control system allows the setpoint to be adjusted automatically according to the outdoor temperature in order to reduce consumption and broaden the working temperature range. With the advanced microprocessor control it is possible to set up LAN networks for controlling 6 units in parallel. #### Oil recovery kit Necessary in case of long distances between indoor unit and remote condenser. The separator, by intercepting the oil carried by the compressed gas, and returning it regularly to the carter of the machine, helps to ensure the effective lubrication of the moving parts of the compressor. #### CONFIGURATOR The models are completely config-Version Field 10 11 urable by selecting the version and LRE132CSG the options. To the right is shown an To verify the compatibility of the options, use the selection software or the price list. #### **AVAILABLE VERSIONS** #### Only cooling versions example of configuration. LRE...CLG LRE...CQG Standard execution Low noise execution Super low noise execution #### CONFIGURATION OPTIONS ## **Power supply** 400/3/50 + N - 0 - 400/3/50 - 400/3/50 + N + Circuit breakers - 400/3/50 + circuit breakers - 2 Control microprocessor and lamination device - В Advanced + electronic expansion valve - Partial heat recovery - Absent - Desuperheater (partial heat recovery) - Outdoor unit air flow modulation - Condensation control performed by one 0-10V signal for each
refrigerant circuit - Condensation control performed by a single 0-10V signal - User water flow modulation - Single pump - Dual pump - Single pump + output signal with water flow modulation in ΔT logic = cost - Dual pump + output signal with water flow modulation in ΔT logic = cost - Single pump + output signal with water flow modulation in T logic = cost - Dual pump + output signal with water flow modulation in T logic = costRemote communication - Ahsent - RS485 serial card (Modbus or Carel protocol) - Ethernet card (SNMP or BACNET protocol) + clock card - Ethernet card + clock card + monitoring software - Anti vibration shock mounts - Absent - Rubber vibration dampers at the base of the unit - Spring vibration dampers at the base of the unit **Packing** M - 0 Standard - Wooden cage - Wooden crate - Remote control - Absent 9 - Simplified remote control panel - Remote display for programmable microprocessor - 10 Anti-intrusion panelling - Present (standard for Q version and mandatory for field 11 = 1) - 11 Unit installation - Indoor installation - Outdoor installation | A | Power factor capacitors | I | Pair of couplings Victaulic | |---|---|---|--| | В | Soft starter | L | Filter regulating kit | | C | Service kit (advanced controller required) | М | Set point compensation outdoor temperature probe | | D | Oil recovery kit for refrigerant pipes > 30 m | N | Compressor tandem/trio isolation valves | | E | ON/OFF status of the compressors | P | Unit lifting pipes | | F | Remote control for step capacity limit (advanced controller required) | Q | Temperature probe for pump shutdown on the primary circuit | | G | Configurable digital alarm board (advanced controller required) | T | Mains power analyzer for monitoring and reducing power consumption | | Н | Refrigerant pressure gauges | | Set-point modification with 4-20mA signal | # Motor-driven evaporating units LRE ### RATED TECHNICAL DATA OF LRE C MOTOR-DRIVEN EVAPORATING UNITS | LRE | | | 052 | 062 | 072 | 082 | 092 | 122 | 132 | |--------------------------------------|-----|---------|-------|----------|-------|-----------|-------|-------|-------| | Power supply | | V-ph-Hz | | | | 400/3N/50 | | | | | Cooling capacity | (1) | kW | 40,9 | 51,3 | 59,6 | 69,8 | 80,3 | 103 | 118 | | Total power input | (1) | kW | 13,4 | 16,6 | 19,5 | 22,7 | 26,2 | 33,7 | 38,3 | | EER | (1) | | 3,06 | 3,09 | 3,06 | 3,08 | 3,06 | 3,07 | 3,07 | | Water flow | (1) | I/h | 7038 | 8837 | 10260 | 12021 | 13821 | 17792 | 20256 | | Water pressure drop | (1) | kPa | 39 | 39 | 37 | 38 | 38 | 37 | 37 | | Maximum current absorption | | Α | 29,0 | 36,0 | 42,0 | 49,0 | 57,0 | 72,0 | 81,0 | | Start up current | | Α | 112 | 161 | 211 | 218 | 178 | 288 | 296 | | Startup current with soft starter | | Α | 67 | 97 | 127 | 131 | 107 | 173 | 178 | | Compressors / circuits | | | | <u>'</u> | , | 2/1 | | | | | Sound power level | (2) | dB(A) | 73 | 75 | 76 | 77 | 80 | 80 | 82 | | Sound power level, low-noise version | (2) | dB(A) | 67 | 69 | 70 | 71 | 74 | 74 | 76 | | Sound power level quiet version | (2) | dB(A) | 61 | 63 | 64 | 65 | 68 | 68 | 70 | | Weight without options | | kg | 293 | 311 | 321 | 339 | 383 | 529 | 581 | | LRE | | | 152 | 154 | 182 | 184 | 212 | 214 | 242 | | Power supply | | V-ph-Hz | | | | 400/3N/50 | | | | | Cooling capacity | (1) | kW | 136 | 131 | 161 | 163 | 190 | 188 | 214 | | Total power input | (1) | kW | 43,8 | 42,1 | 48,7 | 51,3 | 57,3 | 58,8 | 62,5 | | EER | (1) | | 3,10 | 3,10 | 3,30 | 3,17 | 3,32 | 3,19 | 3,42 | | Water flow | (1) | I/h | 23359 | 22470 | 27638 | 27976 | 32733 | 32292 | 36807 | | Water pressure drop | (1) | kPa | 37 | 28 | 32 | 30 | 33 | 33 | 30 | | Maximum current absorption | | Α | 91,0 | 90,0 | 112 | 114 | 130 | 128 | 151 | | Start up current | | A | 356 | 224 | 380 | 293 | 399 | 307 | 420 | | Startup current with soft starter | | Α | 214 | 153 | 228 | 199 | 239 | 210 | 252 | | Compressors / circuits | | | 2/1 | 4/2 | 2/1 | 4/2 | 2/1 | 4/2 | 2/1 | | Sound power level | (2) | dB(A) | 87 | 79 | 87 | 83 | 89 | 83 | 89 | | | | | | | | | | | | (2) (2) dB(A) dB(A) Sound power level, low-noise version Sound power level quiet version Weight without options ⁽¹⁾ Water temperature - user side 12°C / 7°C, condensation temperature 50°C (EN14511:2022) (2) Sound power level measured according to ISO 9614 ### RATED TECHNICAL DATA OF LRE C MOTOR-DRIVEN EVAPORATING UNITS | LRE | | 244 | 274 | 302 | 314 | 364 | 384 | 454 | | |--------------------------------------|-----|---------|-------|-----------|-------|-------|-------|-------|-------| | Power supply | | V-ph-Hz | | 400/3N/50 | | | | | | | Cooling capacity | (1) | kW | 209 | 238 | 266 | 275 | 319 | 340 | 395 | | Total power input | (1) | kW | 65,9 | 74,9 | 78,7 | 85,2 | 98,3 | 106 | 117 | | EER | (1) | | 3,17 | 3,17 | 3,39 | 3,23 | 3,24 | 3,22 | 3,37 | | Water flow | (1) | I/h | 35979 | 40901 | 45787 | 47326 | 54801 | 58363 | 67822 | | Water pressure drop | (1) | kPa | 35 | 36 | 36 | 36 | 37 | 37 | 23 | | Maximum current absorption | | A | 144 | 161 | 166 | 182 | 224 | 240 | 261 | | Start up current | | A | 360 | 377 | 510 | 447 | 492 | 508 | 529 | | Startup current with soft starter | | A | 244 | 259 | 306 | 305 | 340 | 353 | 369 | | Compressors / circuits | | | 4/2 | 4/2 | 2/1 | 4/2 | 4/2 | 4/2 | 4/2 | | Sound power level | (2) | dB(A) | 83 | 85 | 91 | 90 | 90 | 90 | 92 | | Sound power level, low-noise version | (2) | dB(A) | 77 | 79 | 88 | 84 | 86 | 86 | 87 | | Sound power level quiet version | (2) | dB(A) | 71 | 73 | 82 | 78 | 80 | 80 | 81 | | Weight without options | | kg | 932 | 1034 | 1048 | 1314 | 1398 | 1422 | 1719 | | LRE | | | 504 | 564 | 606 | 636 | 696 | 746 | |--------------------------------------|-----|---------|-------|-------|-------|-------|--------|--------| | Power supply | | V-ph-Hz | | | 400/ | 3N/50 | | | | Cooling capacity | (1) | kW | 443 | 490 | 513 | 557 | 615 | 658 | | Total power input | (1) | kW | 129 | 145 | 156 | 170 | 176 | 188 | | EER | (1) | | 3,44 | 3,39 | 3,28 | 3,28 | 3,49 | 3,51 | | Water flow | (1) | I/h | 76106 | 84244 | 88214 | 95637 | 105646 | 113024 | | Water pressure drop | (1) | kPa | 27 | 33 | 33 | 36 | 37 | 37 | | Maximum current absorption | | Α | 303 | 317 | 328 | 370 | 412 | 454 | | Start up current | | Α | 571 | 661 | 593 | 638 | 680 | 722 | | Startup current with soft starter | | Α | 403 | 460 | 421 | 457 | 491 | 524 | | Compressors / circuits | | | 4/2 | 4/2 | 6/2 | 6/2 | 6/2 | 6/2 | | Sound power level | (2) | dB(A) | 92 | 93 | 94 | 94 | 94 | 94 | | Sound power level, low-noise version | (2) | dB(A) | 88 | 90 | 88 | 89 | 89 | 90 | | Sound power level quiet version | (2) | dB(A) | 82 | 84 | 82 | 83 | 83 | 84 | | Weight without options | | kg | 1762 | 1829 | 2349 | 2446 | 2378 | 2460 | ⁽¹⁾ Water temperature - user side 12° C / 7° C, condensation temperature 50° C (EN14511:2022) (2) Sound power level measured according to ISO 9614 # Motor-driven evaporating units LRE ### DIMENSIONAL DRAWINGS | LEGEN | D | |-------|-----------------------------------| | 1 | Refrigerant outlet | | 2 | Refrigerant return | | 3 | User side - inlet (Victaulic 2") | | 4 | User side - outlet (Victaulic 2") | | 5 | De-superheater water outlet 1" | | 6 | Desuperheater water inlet 1" | | 7 | Vibration dumpers | | 8 | Lifting points | | 9 | Power supply input | | 10 | User interface | | CLOSI | NG PANELLING AVAILABLE ON REOUEST | #### LRE 1) Ø 2) Ø #### LEGEND | 1 | Refrigerant outlet | |--------|--| | 2 | Refrigerant return | | 3 | User side - inlet (Victaulic 2") | | 4 | User side - outlet (Victaulic 2") | | 5 | De-superheater water outlet 1" | | 6 | Desuperheater water inlet 1" | | 7 | Vibration dumpers | | 8 | Lifting points | | 9 | Power supply input | | 10 | User interface | | 11 | Outlet safety valve G. 3/4" F (only 152) | | CLOSII | NG PANELLING AVAILABLE ON REQUEST | | LRE | 122 | 132 | 152 | |------|-----|-----|-----| | 1) Ø | 28 | 42 | 42 | | 2) Ø | 28 | 28 | 35 | # Motor-driven evaporating units LRE ### DIMENSIONAL DRAWINGS | L | EG | E | N | D | |---|----|---|----|---| | - | Lu | - | 14 | ν | | 1 | Refrigerant outlet | |-------|-----------------------------------| | 2 | Refrigerant return | | 3 | User side - inlet (Victaulic 3") | | 4 | User side - outlet (Victaulic 3") | | 5 | De-superheater water outlet 2" | | 6 | Desuperheater water inlet 2" | | 7 | Vibration dumpers | | 8 | Lifting points | | 9 | Power supply input | | 10 | User interface | | 11 | Outlet safety valve G. 3/4" F | | CLOSI | NG PANELLING AVAILABLE ON REQUEST | ### ... | LRE | 182 | 212 | 242 | |------|-----|-----|-----| | 1) Ø | 42 | 42 | 42 | | 2) Ø | 35 | 35 | 35 | #### LEGEND | 1 | User side - inlet (Victaulic 3") | |--------|------------------------------------| | 2 | User side - outlet (Victaulic 3") | | 3 | Refrigerant outlet | | 4 | Refrigerant return | | 5 | De-superheater water outlet 2" | | 6 | Desuperheater water inlet 2" | | 7 | Vibration dumpers | | 8 | Lifting points | | 9 | Power supply input | | 10 | User interface | | CLOSIN | NG PANELLING AVAILARLE ON RECHIEST | #### CLOSING PANELLING AVAILABLE ON REQUEST | LRE | 154 | 184 | 214 | 244 | 274 | |------|-----|-----|-----|-----|-----| | 3) Ø | 28 | 28 | 28 | 28 | 35 | | 4) Ø | 22 | 22 | 28 | 28 | 28 | # Motor-driven evaporating units LRE | LEGEND | | |---------|---| | 1 | Refrigerant outlet | | 2 | Refrigerant return | | 3 | User side - inlet (Victaulic 3") | | 4 | User side - outlet (Victaulic 3") | | 5 | De-superheater water outlet 2" | | 6 | Desuperheater water inlet 2" | | 7 | Low pressure safety valve outlet G. 3/4" F | | 8 | High-pressure relief valve outlet G. 3/4" F | | 9 | Vibration dumpers | | 10 | Power supply input | | 11 | User interface | | 12 | Lifting points | | CLOSING |
PANELLING AVAILABLE ON REQUEST | | LEGENI |) | |--------|-----------------------------------| | 1 | User side - inlet (Victaulic 3") | | 2 | User side - outlet (Victaulic 3") | | 3 | Refrigerant outlet | | 4 | Refrigerant return | | 5 | De-superheater water outlet 2" | | 6 | Desuperheater water inlet 2" | | 7 | Vibration dumpers | | 8 | Lifting points | | 9 | Power supply input | | 10 | User interface | | 11 | Outlet safety valve G. 1" F | | CLOSIN | G PANELLING AVAILABLE ON REQUEST | | LRE | 314 | 364 | 384 | |------|-----|-----|-----| | 3) Ø | 35 | 35 | 35 | | 4) Ø | 28 | 28 | 28 | # Motor-driven evaporating units LRE | LEGEN | D | |-------|---| | 1 | User side - inlet (Victaulic 4") | | 2 | User side - outlet (Victaulic 4") | | 3 | Refrigerant outlet | | 4 | Refrigerant return | | 5 | De-superheater water outlet 2" | | 6 | Desuperheater water inlet 2" | | 7 | Vibration dumpers | | 8 | Lifting points | | 9 | Power supply input | | 10 | User interface | | 11 | Low pressure safety valve outlet LRE 454-504 G. 1" F; LRE 564 G. 3/4" F | | 12 | High-pressure relief valve outlet LRE 564 G. 1" M | | CLOSI | NG PANELLING AVAILABLE ON REQUEST | | LRE | 454 | 504 | 564 | |------|-----|-----|-----| | 3) Ø | 42 | 42 | 42 | | 4) Ø | 35 | 35 | 35 | | LEGEN | D | |--------|-----------------------------------| | 1 | User side - inlet (Victaulic 5") | | 2 | User side - outlet (Victaulic 5") | | 3 | Refrigerant outlet | | 4 | Refrigerant return | | 5 | De-superheater water outlet 2" | | 6 | Desuperheater water inlet 2" | | 7 | Vibration dumpers | | 8 | Lifting points | | 9 | Power supply input | | 10 | User interface | | 11 | Outlet safety valve G. 1" 1/4 F | | CLOSII | NG PANELLING AVAILABLE ON REQUEST | | LRE | 606 | 636 | 696 | 746 | |------|-----|-----|-----|-----| | 3) Ø | 42 | 54 | 54 | 54 | | 4) Ø | 42 | 42 | 42 | 42 | # WW - WATER CHILLERS AND HEAT PUMPS Introduction p.308 MCW p.310 WRE p.316 WLE p.332 #### GEOTHERMAL ENERGY #### HYDROTHERMAL ENERGY # A complete offer ranging from 5 to 700 kW, which adapts to every type of source The possibility of using water to receive condensation heat from a chilling unit or using water as an energy source for a heat pump, represents an important opportunity to achieve high seasonal and nomimal energy performances. Compared to air, in fact, the temperature of the water from an aquifer, well or watercourse is characterised by significantly lower values in summer and higher values in winter and, in general, by slight variations when functioning during the different seasons. Galletti's range of MCW and WRE chillers and heat pumps have been designed to exploit this opportunity more efficiently and various versions of the units are available to better adapt to different types of installations. Water chillers are also used combined with a dry cooler, where it is not possible to install an air unit for lack of space or for the presence of structures that are not able to support its weight. ### An efficiency pack for every application To respond to the different installation requirements in the air conditioning market means being able to propose ad hoc technical solutions where the main features are optimised each time, according to the specific project. The philosophy underlying the Efficiency Pack adopted on Galletti's range of water-cooled chillers aims to provide systems that focus on reliability and redundancy through bi-circuit solutions or part-load efficiency through tandem or trio solutions. In the first case, the continuity of the supply of power to the system is in fact guaranteed by the presence of independent circuits and continues to operate when the machine comes to a partial stop. In the second case, however, the presence of several compressors connected in parallel to the same cooling circuit allows to achieve a high degree of efficiency under part-load conditions. ### High power density The footprint represents a key feature for units installed inside equipment compartments. The design philosophy which characterises Galletti's water-water units takes this aspect into account, favouring a compact size by choosing smaller components without overlooking efficiency and reliability. The scroll compressors and the plate heat exchangers fully comply with these criteria, while the careful positioning of the water connections to the system, helps minimising the space required and installation costs. ### Versatility in every application The different water temperatures needed to allow condensation heat to dissipate require ad hoc sizings of the plate heat exchangers involved. Whether the units use water from a well or aquifer, or whether the units are to be connected to a dry-cooler or an evaporating tower, from the range of Galletti products it is possible to choose the version that better meets the system requirements. ### Water chillers and heat pumps MCW # Indoor packaged unit # MCW 5 - 39 kW compressor Heating/ cor Rotary Refrigerant compressor R-407C ### Compact single circuit units MCW heat pumps are designed for residential and light-duty commercial environments, and in some cases for industrial applications, process industries and geothermal energy. The entire range is built with a structure and base made of galvanised sheet panelling in epoxy-polyester paint finish, RAL7035, and there is the possibility of choosing an efficient sound absorbing material which, together with the adoption of scroll type compressors, ensure that the units are exceptionally silent and compact. With an attractive design, a small footprint, the possibility to fit the units with a hydraulic kit complete with circulation pump, expansion tank and buffer tank, means that the machines can even be installed in environments not involved in residential applications. The design philosophy has favoured the development of units having a reduced height with water connections placed on the upper part, which reduce installation time and costs and the need for technical space. The MCW series offers a wide range of configurations in terms of accessories available and consists of a large number of sizes, including several single-phase models, each available as a low noise version, in order to fully respond to all system requirements. Only top quality products are used for the cooling, hydraulic and electric systems guaranteeing high technical level of the MCW heat pumps in terms of efficiency, reliability and reduced noise levels. #### **PLUS** - » Easy installation and compact dimensions - » Scroll compressor - » Built-in hydronic units - » Wide range of available accessories The possibility to dissipate into the aquifer or soil using probes, maintains the original performance of the MCW unit during the entire period of use. ### MAIN COMPONENTS #### **Structure** The structure is in galvanised steel sheet, which is resistant to corrosive agents. Closed equipment compartments are accessible on three sides thanks to easily removable panels with internal soundproofing insulation. #### Compressor Hermetic scroll compressor powered by a single or three-phase asynchronous motor. It is fixed to the base with rubber vibration dampers. #### **Heat exchangers** Brazed-welded plate condenser and evaporator in AISI 316 austenitic stainless steel, specifically developed to maximise heat exchange coefficients between water and refrigerant. #### Microprocessor control The microprocessor control has complete management of the MCW units and, because it is highly customisable, it allows to adapt and improve its functioning in every application. #### Hydraulic kit It consists of a centrifugal circulating pump powered by an asynchronous electric motor capable of providing a suitable available head under operating conditions. Also included are an expansion tank and an automatic filling tap. | CONFIGURATOR | | | | | | | | | | | | | | | | | | |--|-----------|-------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----| | The models are completely configurable by selecting | Version | Field | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | the version and the options. To the right is shown an example of configuration | MCW039HSP | | 1 | 0 | C | 2 | 0 | 0 | 0 | 0 | 0 | 0 | G | 0 | 0 | 0 | 0 | To verify the compatibility of the options, use the selection software or the price list. #### **AVAILABLE VERSIONS** Reversible heat pump versions MCW..HSP MCW..HLP Standard execution Low noise execution #### CONFIGURATION OPTIONS - **Refrigerant Power supply** 0 - R407C 230 V 1 50 Hz R407C 400 V 3 N 50 Hz - R407C 400 V 3 50 Hz 2 - 2 - Onboard controller and expansion valve Basic + mechanical expansion valve 0 - 3 Source water flow modulation - Absent - Water flow adjustment valve onboard - Water pump and tank - 0 Absent - LP pump + expansion vessel LP pump + expansion vessel + water tank - Remote control / Serial communication - RS485 serial board (Carel / Modbus protocol) - Refrigerant pipework accessories - Absent - Refrigerant pressure gauges - **Compressors options** - 7 0 - 8 - Plate water condenser Oversized water plate condenser for cooling tower/dry cooler 0 - Remote control 9 - Absent - Remote simplified user panel - 10 **Packing** - Standard - Wooden cage - Wooden crate - 11 Anti vibration shock mounts - Rubber anti vibration shock mounts ## Water chillers and heat pumps MCW ### MCW H RATED TECHNICAL DATA | MCW H | | | 005M | 007M | 010 | 010M | 012 | 015 | 018 | |---|--------|---------|--------------|--------------|---------------|--------------|---------------|---------------|---------------| | Power supply | | V-ph-Hz | 230 - 1 - 50 | 230 - 1 - 50 | 400 - 3N - 50 | 230 - 1 - 50 | 400 - 3N - 50 | 400 - 3N - 50 | 400 - 3N - 50 | | Cooling capacity | (1)(E) | kW | 5,20 | 6,40 | 9,10 | 9,10 | 11,0 | 13,7 | 16,1 |
| Total power input | (1)(E) | kW | 1,50 | 2,10 | 2,70 | 2,80 | 3,30 | 4,00 | 4,70 | | EER | (1)(E) | | 3,36 | 3,03 | 3,33 | 3,27 | 3,32 | 3,44 | 3,45 | | SEER | (2)(E) | | 2,91 | 2,72 | 3,07 | 3,02 | 3,10 | 3,25 | 3,30 | | Water flow user side | (1) | l/h | 896 | 1100 | 1577 | 1567 | 1901 | 2355 | 2779 | | Water pressure drop user side | (1)(E) | kPa | 24 | 26 | 23 | 23 | 26 | 23 | 25 | | Water flow source side | (1) | l/h | 1146 | 1439 | 2025 | 2021 | 2442 | 3008 | 3544 | | Water pressure drop source side | (1)(E) | kPa | 30 | 43 | 29 | 29 | 42 | 28 | 42 | | Available pressure head user side - LP pumps | (1) | kPa | 92 | 85 | 78 | 79 | 148 | 148 | 140 | | Heating capacity | (3)(E) | kW | 5,40 | 6,90 | 9,50 | 9,70 | 11,7 | 14,2 | 17,3 | | Total power input | (3)(E) | kW | 1,70 | 2,30 | 3,00 | 3,10 | 3,60 | 4,40 | 5,10 | | COP | (3)(E) | | 3,11 | 3,02 | 3,16 | 3,17 | 3,25 | 3,27 | 3,41 | | SCOP | (2)(E) | | 4,01 | 3,95 | 4,24 | 4,23 | 4,22 | 4,22 | 4,35 | | Heating energy efficiency class | (4)(E) | | | | | A++ | | | | | Water flow user side | (3) | l/h | 939 | 1201 | 1645 | 1687 | 2024 | 2467 | 2996 | | Water pressure drop user side | (3)(E) | kPa | 21 | 31 | 20 | 21 | 30 | 20 | 31 | | Water flow source side | (3) | l/h | 1092 | 1380 | 1918 | 1970 | 2392 | 2916 | 3606 | | Water pressure drop source side | (3)(E) | kPa | 35 | 39 | 33 | 34 | 39 | 34 | 40 | | Available pressure head user side - LP pumps | (3) | kPa | 82 | 75 | 67 | 67 | 130 | 124 | 132 | | Maximum current absorption | | Α | 12,0 | 15,0 | 7,00 | 23,0 | 10,0 | 13,0 | 14,0 | | Start up current | | Α | 47 | 61 | 46 | 100 | 50 | 66 | 74 | | Compressors / circuits | | | | | | 1/1 | | | | | Expansion vessel volume | | dm³ | 1 | 1 | 1 | 1 | 5 | 5 | 5 | | Buffer tank volume | | dm³ | 47 | 47 | 47 | 47 | 92 | 92 | 92 | | Sound power level | (5) | dB(A) | 55 | 55 | 59 | 59 | 61 | 61 | 61 | | Sound power level, low-noise version | (5) | dB(A) | 53 | 53 | 57 | 57 | 59 | 59 | 59 | | Transport weight unit with pump and tank | | kg | 141 | 144 | 147 | 147 | 173 | 175 | 182 | | Operating weight unit with pump and full tank | | kg | 176 | 178 | 181 | 181 | 235 | 270 | 289 | ⁽¹⁾ Water temperature - user side 12°C / 7°C, water temperature - dissipation side 30°C / 35°C (EN14511:2022) (2) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. (3) Water temperature - user side 40°C / 45°C, water temperature - source side 10°C / 7°C (EN14511:2022) (4) Seasonal energy efficiency class for LOW TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++ → D] (E) EUROVENT certified data ### MCW H RATED TECHNICAL DATA | MCW H | | | 020 | 022 | 027 | 031 | 039 | |---|--------|-----------------|------|------|---------------|------|------| | Power supply | | V-ph-Hz | | | 400 - 3N - 50 | | | | Cooling capacity | (1)(E) | kW | 18,9 | 19,9 | 24,4 | 28,3 | 34,9 | | Total power input | (1)(E) | kW | 5,20 | 5,90 | 7,40 | 8,70 | 10,7 | | EER | (1)(E) | | 3,63 | 3,39 | 3,30 | 3,25 | 3,25 | | SEER | (2)(E) | | 3,50 | 3,29 | 3,22 | 3,20 | 3,22 | | Water flow user side | (1) | l/h | 3252 | 3418 | 4207 | 4867 | 6014 | | Water pressure drop user side | (1)(E) | kPa | 23 | 24 | 21 | 24 | 23 | | Water flow source side | (1) | I/h | 4105 | 4376 | 5426 | 6290 | 7773 | | Water pressure drop source side | (1)(E) | kPa | 35 | 42 | 35 | 49 | 49 | | Available pressure head user side - LP pumps | (1) | kPa | 122 | 158 | 151 | 139 | 149 | | Heating capacity | (3)(E) | kW | 19,3 | 21,1 | 26,0 | 30,3 | 37,5 | | Total power input | (3)(E) | kW | 5,60 | 6,30 | 8,10 | 9,40 | 11,4 | | COP | (3)(E) | | 3,44 | 3,33 | 3,22 | 3,23 | 3,28 | | SCOP | (2)(E) | | 4,67 | 4,44 | 4,27 | 4,90 | 4,79 | | Heating energy efficiency class | (4)(E) | | A+++ | A++ | A++ | A+++ | A+++ | | Water flow user side | (3) | I/h | 3343 | 3654 | 4504 | 5249 | 6506 | | Water pressure drop user side | (3)(E) | kPa | 24 | 30 | 25 | 35 | 36 | | Water flow source side | (3) | I/h | 4028 | 4350 | 5283 | 6174 | 7697 | | Water pressure drop source side | (3)(E) | kPa | 34 | 37 | 32 | 37 | 36 | | Available pressure head user side - LP pumps | (3) | kPa | 115 | 127 | 113 | 89 | 132 | | Maximum current absorption | | Α | 16,0 | 17,0 | 20,0 | 29,0 | 32,0 | | Start up current | | Α | 101 | 98 | 130 | 130 | 135 | | Compressors / circuits | | | | | 1/1 | | | | Expansion vessel volume | | dm ³ | 5 | 5 | 5 | 5 | 5 | | Buffer tank volume | | dm ³ | 92 | 92 | 92 | 92 | 92 | | Sound power level | (5) | dB(A) | 61 | 62 | 62 | 65 | 65 | | Sound power level, low-noise version | (5) | dB(A) | 60 | 60 | 60 | 63 | 63 | | Transport weight unit with pump and tank | | kg | 225 | 259 | 271 | 286 | 297 | | Operating weight unit with pump and full tank | | kg | 292 | 295 | 307 | 322 | 348 | ⁽¹⁾ Water temperature - user side 12°C/7°C, water temperature - dissipation side 30°C/35°C (EN14511:2022) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. (3) Water temperature - user side 40°C/45°C, water temperature - source side 10°C/7°C (EN14511:2022) (4) Seasonal energy efficiency class for LOW TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++ → D] (E) EUROVENT certified data # Water chillers and heat pumps MCW 7 Vibration dampers ### Water chillers and heat pumps WRE # Indoor packaged unit # WRE 40 - 750 kW Heating/ Cooling compressor Refrigerant Cooling only **PLUS** - » Electronic expansion valve - » Up to 6 compressors - » 1 or 2 cooling circuits - » Remote connectivity with the most common protocols - » Compact dimensions - » 3 different acoustic configurations - » High seasonal efficiency values ### Water-water unit with high seasonal efficiency WRE is the new Galletti series of self-contained reversible heat pumps and water chillers for indoor installation, suitable for both air conditioning and industrial process applications. The range covers capacities from 40 kW up to a maximum of 750 kW and is characterised by extremely high levels of seasonal efficiency (in compliance with ErP 2021 requirements) and reduced space requirements in order to facilitate access to technical compartments (for capacities of up to 560 kW, the width and height are less than 96 cm and 196 cm respectively). In order to increase the efficiency at partial loads, WRE models are provided with tandem or trio solutions (2 or 3 compressors on a single circuit) and equipped with electronic expansion valve as standard. Both single and dual circuit versions are available. The use of top quality components at the cutting edge of technology in cooling, hydraulic, and electrical systems makes WRE chillers state of the art in terms of efficiency, reliability, and operating limits. In fact, the ability to produce water from -8 °C to 55 °C and use any type of natural source for dissipation is guaranteed: soil, ground water, or The high configurability of the series, which is in the DNA of Galletti, is guaranteed by 2 different versions, with and without closing panels, and 3 different acoustic configurations: standard, low noise, and super low noise, able to ensure a sound power level reduction of up to 12 dB(A). The range of the configuration available is completed by the possibility of producing hot water up to 60 °C at zero cost through partial heat recovery. Lastly, the advanced microprocessor that regulates the operation of the unit allows: the control of a maximum of 2 pumps on the equipment side and 2 pumps on the source side, on/off or modulating, the possibility of cascade connection of up to 4 units and management of reversibility on both the gas side and the water side. The possibility of keeping the evaporator indoors means there is no need to add glycol to the water inside the system. In addition, you can keep all components requiring maintenance in an easily accessible room. ### MAIN COMPONENTS #### **Structure** Made in galvanised steel sheet with a polyester powder coating for outdoors. On request the compressor compartment is completely sealed and accessible on 3 sides thanks to easily removable panels that greatly simplify all maintenance and inspection operations. #### Compressori scroll Scroll-type compressors in a tandem or trio configuration equipped with IDV valve. The IDV intermediate delivery valve technology allows the compressor to avoid losses caused by overcompression and, consequently, the additional work the motor has to perform in partial-load operation, saving energy and improving seasonal and partial-load efficiency from 3% to 10%. #### **Heat exchangers** All units have heat exchangers with braze-welded AISI 316 austenitic stainless steel plates and connections made of AISI 316 L, characterised by a reduced carbon content to facilitate brazing. #### **Cooling circuit** It can be produced in 2 different versions with the same power rating (Efficiency Pack); using mainly: R410A scroll compressors, brazed plate heat exchangers, and electronic expansion valves. #### **Electronic microprocessor control** It allows complete management of the unit. The electronic control system allows the setpoint to be adjusted automatically according to the outdoor temperature in order to reduce consumption and broaden the working temperature range. With the advanced microprocessor
control it is possible to set up LAN networks for controlling 4 units in parallel. | CONFIGURATOR | | | | | | | | | | | | | |---|----------|-------|---|---|---|---|---|---|---|---|---|----| | The models are completely configurable by selecting the | Version | Field | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | version and the options. To the right is shown an example of configuration. | WRE132HL | | 2 | В | 0 | Р | 0 | 1 | G | 0 | 0 | 2 | To verify the compatibility of the options, use the selection software or the price list. #### **AVAILABLE VERSIONS** | Only cooling vers | ions | |-------------------|------| | WRÉCSG | | WRE...CLG WRE...CQG Standard execution Low noise execution Super low noise execution #### Heat pump versions WRE...HLG WRE...HQG Reversible, standard execution Reversible, low noise execution Reversible, quite execution #### CONFIGURATION OPTIONS #### **Power supply** - 400 3 50 + N0 - 400 3 50 - 400 3 50 + N + circuit breakers - 400 3 50 + circuit breakers - Control microprocessor and lamination device 2 - В Advanced + electronic expansion valve - 3 Partial heat recovery - Absent - Desuperheater (partial heat recovery) - Management of source side pumps* - 2 Dual pump - $Single\ pump\ +\ condensation\ control\ with\ 0\text{-}10V\ modulated\ output\ signal$ Dual pump + condensation control with 0-10V modulated output signal User water flow modulation* - Single pump - Single pump + output signal with water flow modulation in ΔT logic = cost - Dual pump + output signal with water flow modulation in ΔT logic = cost Single pump + output signal with water flow modulation in T logic = cost Dual pump + output signal with water flow modulation in T logic = cost #### 6 Remote communication - Absent - RS485 serial card (Modbus or Carel protocol) - Ethernet card (SNMP or BACNET protocol) + clock card - Ethernet card + clock card + monitoring software - 7 Anti vibration shock mounts - Absent - Rubber vibration dampers at the base of the unit - Spring vibration dampers at the base of the unit M - 8 Packing - Standard - Wooden cage - Wooden crate - Remote control - Absent - Simplified remote control panel - Remote display for programmable microprocessor - 10 Anti-intrusion panelling - Absent - Present (standard for Q version) *PUMP NOT SUPPLIED | ACC | ESSORIES | | | |-----|---|---|--| | A | Power factor capacitors | I | Two pairs of Victaulic joints | | В | Soft starter | L | Filter regulating kit | | C | Service kit (advanced controller required) | M | Set point compensation outdoor temperature probe | | D | Signal for user side water flow reversal valve management | N | Compressor tandem/trio isolation valves | | E | ON/OFF status of the compressors | P | Unit lifting pipes | | F | Remote control for step capacity limit (advanced controller required) | Q | Temperature probe for pump shutdown on the primary circuit | | G | Configurable digital alarm board (advanced controller required) | T | Mains power analyzer for monitoring and reducing power consumption | | Н | Refrigerant pressure gauges | V | Set-point modification with 4-20mA signal | # Water chillers and heat pumps WRE ### RATED TECHNICAL DATA OF WRE C WATER CHILLERS | WRE | | | 052 | 062 | 072 | 082 | 092 | 122 | 132 | |--------------------------------------|---------|---------|-------|-------|-------|---------------|-------|-------|-------| | Power supply | | V-ph-Hz | | | | 400 - 3N - 50 | | | | | Cooling capacity | (1)(E) | kW | 47,1 | 59,0 | 68,5 | 80,5 | 92,6 | 119 | 135 | | Total power input | (1)(E) | kW | 11,0 | 13,8 | 16,1 | 18,8 | 21,7 | 27,7 | 31,4 | | EER | (1)(E) | | 4,26 | 4,26 | 4,26 | 4,28 | 4,27 | 4,31 | 4,31 | | SEER | (2)(E) | | 5,48 | 5,71 | 5,75 | 5,53 | 5,84 | 5,55 | 5,53 | | Water flow user side | (1) | I/h | 8112 | 10158 | 11807 | 13864 | 15946 | 20510 | 23312 | | Water pressure drop user side | (1)(E) | kPa | 50 | 50 | 48 | 49 | 49 | 47 | 47 | | Water flow source side | (1) | I/h | 9873 | 12364 | 14382 | 16884 | 19432 | 24979 | 28414 | | Water pressure drop source side | (1)(E) | kPa | 77 | 77 | 73 | 74 | 75 | 70 | 71 | | Maximum current absorption | | Α | 29,0 | 36,0 | 42,0 | 49,0 | 57,0 | 72,0 | 81,0 | | Start up current | | Α | 112 | 161 | 211 | 218 | 178 | 288 | 296 | | Startup current with soft starter | | Α | 67 | 97 | 127 | 131 | 107 | 173 | 178 | | Compressors / circuits | | | | | | 2/1 | | | | | Sound power level | (3) | dB(A) | 73 | 75 | 76 | 77 | 80 | 80 | 82 | | Sound power level, low-noise version | (3) | dB(A) | 67 | 69 | 70 | 71 | 74 | 74 | 76 | | Sound power level quiet version | (3) | dB(A) | 61 | 63 | 64 | 65 | 68 | 68 | 70 | | Transport / operating weight | | kg | 310 | 328 | 343 | 361 | 408 | 560 | 619 | | | | | | | | | | | | | WRE | | | 152 | 154 | 182 | 184 | 212 | 214 | 242 | | Power supply | (-) (-) | V-ph-Hz | | 1 | | 400 - 3N - 50 | | | | | Cooling capacity | (1)(E) | kW | 156 | 149 | 182 | 185 | 215 | 214 | 240 | | Total power input | (1)(E) | kW | 36,2 | 35,0 | 41,0 | 42,6 | 48,4 | 48,9 | 53,3 | | EER | (1)(E) | | 4,32 | 4,24 | 4,43 | 4,34 | 4,44 | 4,37 | 4,51 | | SEER | (2)(E) | | 5,80 | 5,30 | 5,83 | 6,31 | 5,60 | 5,95 | 5,53 | | Water flow user side | (1) | I/h | 26893 | 25552 | 31238 | 31791 | 36973 | 36795 | 41332 | | Water pressure drop user side | (1)(E) | kPa | 48 | 35 | 39 | 38 | 41 | 41 | 37 | | Water flow source side | (1) | I/h | 32772 | 31290 | 37948 | 38779 | 44903 | 44808 | 50098 | | Water pressure drop source side | (1)(E) | kPa | 74 | 52 | 60 | 58 | 63 | 63 | 57 | | Maximum current absorption | | Α | 91,0 | 90,0 | 112 | 114 | 130 | 128 | 151 | | Start up current | | A | 356 | 224 | 380 | 293 | 399 | 307 | 420 | | Startup current with soft starter | | Α | 214 | 153 | 228 | 199 | 239 | 210 | 252 | | Compressors / circuits | | | 2/1 | 4/2 | 2/1 | 4/2 | 2/1 | 4/2 | 2/1 | | Sound power level | (3) | dB(A) | 87 | 79 | 87 | 83 | 89 | 83 | 89 | | Sound power level, low-noise version | (3) | dB(A) | 81 | 73 | 83 | 77 | 84 | 77 | 85 | | Sound power level quiet version | (3) | dB(A) | 75 | 67 | 77 | 71 | 78 | 71 | 79 | 997 688 727 799 869 Transport / operating weight ⁽¹⁾ Water temperature - user side 12°C / 7°C, water temperature - dissipation side 30°C (EN14511:2022) (2) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document ErP 2009/125/EC DIRECTIVE in the catalogue introducing pages, or to the EN14825:2022 regulation. ⁽³⁾ Sound power level measured according to ISO 9614 (E) EUROVENT certified data ### RATED TECHNICAL DATA OF WRE C WATER CHILLERS | WRE | | | 244 | 274 | 302 | 314 | 364 | 384 | 454 | |--------------------------------------|--------|---------|-------|-------|-------|---------------|-------|-------|-------| | Power supply | | V-ph-Hz | | | | 400 - 3N - 50 | | | | | Cooling capacity | (1)(E) | kW | 238 | 271 | 299 | 314 | 362 | 388 | 457 | | Total power input | (1)(E) | kW | 54,7 | 62,3 | 66,8 | 71,4 | 82,1 | 88,0 | 93,7 | | EER | (1)(E) | | 4,35 | 4,35 | 4,48 | 4,40 | 4,41 | 4,40 | 4,88 | | SEER | (2)(E) | | 5,96 | 5,91 | 5,55 | 6,22 | 6,19 | 5,92 | 6,50 | | Water flow user side | (1) | I/h | 40957 | 46553 | 51448 | 54021 | 62227 | 66617 | 78600 | | Water pressure drop user side | (1)(E) | kPa | 44 | 46 | 44 | 46 | 47 | 47 | 30 | | Water flow source side | (1) | I/h | 49913 | 56753 | 62410 | 65722 | 75682 | 81052 | 94179 | | Water pressure drop source side | (1)(E) | kPa | 65 | 68 | 67 | 71 | 71 | 71 | 50 | | Maximum current absorption | | Α | 144 | 161 | 166 | 182 | 224 | 240 | 261 | | Start up current | | Α | 360 | 377 | 510 | 447 | 492 | 508 | 529 | | Startup current with soft starter | | Α | 244 | 259 | 306 | 305 | 340 | 353 | 369 | | Compressors / circuits | | | 4/2 | 4/2 | 2/1 | 4/2 | 4/2 | 4/2 | 4/2 | | Sound power level | (3) | dB(A) | 83 | 85 | 91 | 90 | 90 | 90 | 92 | | Sound power level, low-noise version | (3) | dB(A) | 77 | 79 | 88 | 84 | 86 | 86 | 87 | | Sound power level quiet version | (3) | dB(A) | 71 | 73 | 82 | 78 | 80 | 80 | 81 | | Transport / operating weight | | kg | 992 | 1101 | 1101 | 1393 | 1491 | 1523 | 1925 | | WRE | | | 504 | 564 | 606 | 636 | 696 | 746 | |--------------------------------------|--------|---------|--------|--------|---------|---------|--------|--------| | Power supply | | V-ph-Hz | | | 400 - 3 | 3N - 50 | | | | Cooling capacity | (1)(E) | kW | 511 | 565 | 596 | 643 | 696 | 747 | | Total power input | (1)(E) | kW | 104 | 118 | 127 | 138 | 148 | 157 | | EER | (1)(E) | | 4,91 | 4,80 | 4,69 | 4,65 | 4,70 | 4,74 | | SEER | (2)(E) | | 6,56 | 6,52 | 6,56 | 6,51 | 6,53 | 6,57 | | Water flow user side | (1) | I/h | 87730 | 97009 | 102425 | 110456 | 119608 | 128288 | | Water pressure drop user side | (1)(E) | kPa | 36 | 43 | 43 | 47 | 46 | 47 | | Water flow source side | (1) | I/h | 104947 | 116367 | 123329 | 133152 | 143938 | 154171 | | Water pressure drop source side | (1)(E) | kPa | 60 | 70 | 71 | 76 | 75 | 75 | | Maximum current absorption | | Α | 303 | 317 | 328 | 370 | 412 | 454 | | Start up current | | Α | 571 | 661 | 593 | 638 | 680 | 722 | | Startup current with soft starter | | Α | 403 | 460 | 421 | 457 | 491 | 524 | | Compressors / circuits | | | 4/2 | 4/2 | 6/2 | 6/2 | 6/2 | 6/2 | | Sound power level | (3) | dB(A) | 92 | 93 | 94 | 94 | 94 | 94 | | Sound power level, low-noise version | (3) | dB(A) | 88 | 90 | 88 | 89 | 89 | 90 | | Sound power level quiet version | (3) | dB(A) | 82 | 84 | 82 | 83 | 83 | 84 | | Transport / operating weight | | kg | 1968 | 2035 | 2592 | 2689 | 2648 | 2752 | ⁽¹⁾ Water temperature – user side 12°C/7°C, water temperature – dissipation side 30°C/35°C (EN14511:2022) (2) η efficiency values for heating and
cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. (3) Sound power level measured according to ISO 9614 (E) EUROVENT certified data ## Water chillers and heat pumps WRE | WRE | | | 052 | 062 | 072 | 082 | 092 | 122 | 132 | |--------------------------------------|--------|---------|-------|-------|-------|---------------|-------|-------|-------| | Power supply | | V-ph-Hz | | | | 400 - 3N - 50 | | | | | Cooling capacity | (1)(E) | kW | 47,1 | 58,9 | 68,5 | 80,5 | 92,6 | 119 | 135 | | Total power input | (1)(E) | kW | 11,1 | 13,8 | 16,1 | 18,9 | 21,7 | 27,7 | 31,4 | | EER | (1)(E) | | 4,25 | 4,26 | 4,26 | 4,27 | 4,26 | 4,30 | 4,31 | | SEER | (2)(E) | | 5,48 | 5,71 | 5,75 | 5,53 | 5,84 | 5,55 | 5,53 | | Water flow user side | (1) | I/h | 8122 | 10147 | 11798 | 13874 | 15946 | 20512 | 23307 | | Water pressure drop user side | (1)(E) | kPa | 50 | 50 | 48 | 49 | 49 | 47 | 47 | | Water flow source side | (1) | I/h | 9889 | 12353 | 14371 | 16899 | 19436 | 24984 | 28407 | | Water pressure drop source side | (1)(E) | kPa | 77 | 77 | 73 | 74 | 75 | 70 | 71 | | Heating capacity | (3)(E) | kW | 51,5 | 64,3 | 75,1 | 88,1 | 101 | 133 | 151 | | Total power input | (3)(E) | kW | 14,1 | 17,4 | 20,2 | 23,5 | 27,2 | 34,7 | 39,6 | | COP | (3)(E) | | 3,65 | 3,70 | 3,72 | 3,75 | 3,71 | 3,83 | 3,81 | | Heating energy efficiency class | (4) | | | | | A+++ | | | | | SCOP | (2)(E) | | 5,01 | 5,08 | 5,11 | 5,05 | 5,17 | 5,06 | 5,09 | | Water flow user side | (3) | I/h | 8902 | 11487 | 13414 | 15752 | 18136 | 23816 | 27138 | | Water pressure drop user side | (3)(E) | kPa | 68 | 68 | 64 | 65 | 66 | 65 | 65 | | Water flow source side | (3) | I/h | 11092 | 14517 | 16962 | 19943 | 22903 | 30323 | 34543 | | Water pressure drop source side | (3)(E) | kPa | 93 | 96 | 93 | 94 | 94 | 96 | 96 | | Maximum current absorption | | Α | 29,0 | 36,0 | 42,0 | 49,0 | 57,0 | 72,0 | 81,0 | | Start up current | | Α | 112 | 161 | 211 | 218 | 178 | 288 | 296 | | Startup current with soft starter | | Α | 67 | 97 | 127 | 131 | 107 | 173 | 178 | | Compressors / circuits | | | | | , | 2/1 | | | | | Sound power level | (5) | dB(A) | 73 | 75 | 76 | 77 | 80 | 80 | 82 | | Sound power level, low-noise version | (5) | dB(A) | 67 | 69 | 70 | 71 | 74 | 74 | 76 | | Sound power level quiet version | (5) | dB(A) | 61 | 63 | 64 | 65 | 68 | 68 | 70 | | Transport / operating weight | | kg | 315 | 334 | 353 | 371 | 418 | 572 | 635 | ¹⁰ Water temperature - user side 12°C / 7°C, water temperature - dissipation side 30°C / 35°C (EN14511:2022) (1) For further information, please refer to the technical document "Erp 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. (3) Water temperature - user side 40°C / 45°C, water temperature - source side 10°C / 7°C (EN14511:2022) (4) Seasonal energy efficiency class for LOW TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++ → D] (5) Sound power level measured according to ISO 9614 (E) EUROVENT certified data | tooling capacity (1)(E) kW 156 148 182 185 215 214 240 240 240 240 245 246 246 247 247 247 247 247 247 247 247 247 247 | WRE | | | 152 | 154 | 182 | 184 | 212 | 214 | 242 | |--|--------------------------------------|--------|---------|-------|-------|-------|---------------|-------|-------|-------| | otal power input (1)(E) kW 36,2 35,0 41,0 42,6 48,4 48,9 53,3 ER (1)(E) 4,31 4,24 4,43 4,34 4,44 4,38 4,51 EER (2)(E) 5,80 5,30 5,83 6,31 5,60 5,95 5,53 Nater flow user side (1) (I/h 26895 25545 31235 31789 36961 36787 41326 Vater pressure drop user side (1) (I/h 22788 37944 44893 50089 62402 31283 38775 Vater pressure drop source side (1)(E) kPa 74 60 63 57 67 52 58 leating capacity (3)(E) kW 170 168 194 204 235 236 260 otal power input (3)(E) kW 45,2 43,8 53,2 53,4 60,7 61,3 66,8 OP (3)(E) kW | Power supply | | V-ph-Hz | | | | 400 - 3N - 50 | | | • | | EER (1)(E) 4,31 4,24 4,43 4,34 4,44 4,38 4,51 EER (2)(E) 5,80 5,30 5,83 6,31 5,60 5,95 5,53 Vater flow user side (1) 1/h 26895 25545 31235 31789 36961 36787 41326 Vater pressure drop user side (1)(E) kPa 48 35 39 38 41 41 37 37 420 Vater pressure drop source side (1)(E) kPa 74 60 63 57 67 52 58 Vater pressure drop source side (1)(E) kPa 74 60 63 57 67 52 58 Vater pressure drop source side (1)(E) kW 170 168 194 204 235 236 260 260 260 27 27 28 Vater pressure drop source side (3)(E) kW 45,2 43,8 53,2 53,4 60,7 61,3 66,8 OP (3)(E) 3,76 3,84 3,65 3,82 3,87 3,85 3,89 Vater flow user side (3) 1/h 30579 30190 34885 36631 42241 42305 46681 Vater pressure drop source side (3)(E) kPa 65 49 52 52 57 57 50 Vater flow source side (3)(E) kPa 93 73 72 75 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 81 72 Vater pressure drop sou | Cooling capacity | (1)(E) | kW | 156 | 148 | 182 | 185 | 215 | 214 | 240 | | EER (2)(E) 5,80 5,30 5,83 6,31 5,60 5,95 5,53 Vater flow user side (1) 1/h 26895 25545 31235 31789 36961 36787 41326 Vater pressure drop user side (1)(E) kPa 48 35 39 38 41 41 37 Vater flow source side (1)(E) kPa 74 60 63 57 67 52 58 Vater pressure drop source side (1)(E) kPa 74 60 63 57 67 52 58 Vater pressure drop source side (3)(E) kW 170 168 194 204 235 236 260 Vater pressure drop source side (3)(E) kW 45,2 43,8 53,2 53,4 60,7 61,3 66,8 Vater flow user side (3)(E) XW 45,2 43,8 53,2 53,4 60,7 61,3 66,8 Vater flow user side (3)(E) 5,18 4,92 5,18 5,56 5,14 5,44 5,06 Vater flow user side (3) 1/h 30579 30190 34885 36631 42241 42305 46681 Vater pressure drop source side (3)(E) kPa 65 49 52 52 57 57 50 Vater flow source side (3)(E) kPa 93 73 72 75 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 81 72 Vater pressure drop
source side (3)(E) kPa 93 73 72 75 81 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 81 72 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 81 72 Vater pressure drop source sid | Total power input | (1)(E) | kW | 36,2 | 35,0 | 41,0 | 42,6 | 48,4 | 48,9 | 53,3 | | Value Valu | EER | (1)(E) | | 4,31 | 4,24 | 4,43 | 4,34 | 4,44 | 4,38 | 4,51 | | Vater pressure drop user side (1)(E) | SEER | (2)(E) | | 5,80 | 5,30 | 5,83 | 6,31 | 5,60 | 5,95 | 5,53 | | Vater flow source side (1) 1 | Water flow user side | (1) | l/h | 26895 | 25545 | 31235 | 31789 | 36961 | 36787 | 41326 | | Vater pressure drop source side (1)(E) kPa 74 60 63 57 67 52 58 leating capacity (3)(E) kW 170 168 194 204 235 236 260 otal power input (3)(E) kW 45,2 43,8 53,2 53,4 60,7 61,3 66,8 OP (3)(E) 3,76 3,84 3,65 3,82 3,87 3,85 3,89 leating energy efficiency class (4) COP (2)(E) 5,18 4,92 5,18 5,56 5,14 5,44 5,06 Vater flow user side (3) l/h 30579 30190 34885 36631 42241 42305 46681 Vater pressure drop user side (3) l/h 38688 38317 43571 46423 53818 53713 59452 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 72 Alaximum current absorption A 91,0 90,0 112 114 130 128 151 tart up current A 3566 224 380 293 399 307 420 tartup current with soft starter A 214 153 228 199 239 210 252 ompressors / circuits Ound power level Ound power level Ound power level, low-noise version (5) dB(A) 87 79 87 83 83 87 83 89 Ound power level quiet version (5) dB(A) 75 67 77 71 78 71 78 | Water pressure drop user side | (1)(E) | kPa | 48 | 35 | 39 | 38 | 41 | 41 | 37 | | leating capacity (3)(E) kW 170 168 194 204 235 236 260 260 261 261 262 263 264 265 265 265 265 265 265 265 265 265 265 | Water flow source side | (1) | l/h | 32778 | 37944 | 44893 | 50089 | 62402 | 31283 | 38775 | | otal power input (3)(E) kW 45,2 43,8 53,2 53,4 60,7 61,3 66,8 OP (3)(E) 3,76 3,84 3,65 3,82 3,87 3,85 3,89 leating energy efficiency class (4) A+++ COP (2)(E) 5,18 4,92 5,18 5,56 5,14 5,44 5,06 Vater flow user side (3) I/h 30579 30190 34885 36631 42241 42305 46681 Vater pressure drop user side (3)(E) kPa 65 49 52 52 57 57 50 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 72 Alaximum current absorption A 91,0 90,0 112 114 130 128 151 tart up current A 356 224 380 293 399 307 420 | Water pressure drop source side | (1)(E) | kPa | 74 | 60 | 63 | 57 | 67 | 52 | 58 | | OP (3)(E) 3,76 3,84 3,65 3,82 3,87 3,85 3,89 leating energy efficiency class (4) A+++ COP (2)(E) 5,18 4,92 5,18 5,56 5,14 5,44 5,06 Vater flow user side (3) I/h 30579 30190 34885 36631 42241 42305 46681 Vater pressure drop user side (3)(E) kPa 65 49 52 52 57 57 57 50 Vater flow source side (3) I/h 38688 38317 43571 46423 53818 53713 59452 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 72 Aaximum current absorption A 91,0 90,0 112 114 130 128 151 tart up current A 3566 224 380 293 399 307 420 tartup current with soft starter A 214 153 228 199 239 210 252 compressors / circuits A 214 153 228 199 239 210 252 compressors / circuits (5) dB(A) 87 79 87 83 87 83 89 ound power level, low-noise version (5) dB(A) 81 73 83 77 84 77 85 ound power level quiet version (5) dB(A) 75 67 77 71 78 71 78 71 79 | Heating capacity | (3)(E) | kW | 170 | 168 | 194 | 204 | 235 | 236 | 260 | | leating energy efficiency class (4) | Total power input | (3)(E) | kW | 45,2 | 43,8 | 53,2 | 53,4 | 60,7 | 61,3 | 66,8 | | COP (2)(E) 5,18 4,92 5,18 5,56 5,14 5,44 5,06 Vater flow user side (3) 1/h 30579 30190 34885 36631 42241 42305 46681 Vater pressure drop user side (3)(E) kPa 65 49 52 52 57 57 50 Vater flow source side (3)(E) kPa 93 73 72 75 81 81 72 Asximum current absorption A 91,0 90,0 112 114 130 128 151 tart up current with soft starter A 214 153 228 199 239 210 252 compressors / circuits A 214 153 228 199 239 210 252 compressors / circuits 0 (5) dB(A) 87 79 87 83 87 83 89 ound power level, low-noise version (5) dB(A) 81 73 83 77 71 78 71 79 85 ound power level quiet version (5) dB(A) 75 67 77 71 78 71 78 | COP | (3)(E) | | 3,76 | 3,84 | 3,65 | 3,82 | 3,87 | 3,85 | 3,89 | | Vater flow user side (3) I/h 30579 30190 34885 36631 42241 42305 46681 Vater pressure drop user side (3)(E) kPa 65 49 52 52 57 57 50 Vater flow source side (3) I/h 38688 38317 43571 46423 53818 53713 59452 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 72 Asximum current absorption A 91,0 90,0 112 114 130 128 151 tart up current A 3566 224 380 293 399 307 420 tartup current with soft starter A 214 153 228 199 239 210 252 compressors / circuits A 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 3/1 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 | Heating energy efficiency class | (4) | | | | | A+++ | | | | | Vater pressure drop user side (3)(E) kPa 65 49 52 52 57 57 50 Vater flow source side (3) I/h 38688 38317 43571 46423 53818 53713 59452 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 72 Maximum current absorption A 91,0 90,0 112 114 130 128 151 tart up current A 356 224 380 293 399 307 420 tartup current with soft starter A 214 153 228 199 239 210 252 compressors / circuits 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1< | SCOP | (2)(E) | | 5,18 | 4,92 | 5,18 | 5,56 | 5,14 | 5,44 | 5,06 | | Vater flow source side (3) I/h 38688 38317 43571 46423 53818 53713 59452 Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 72 Anximum current absorption A 91,0 90,0 112 114 130 128 151 tart up current A 356 224 380 293 399 307 420 tartup current with soft starter A 214 153 228 199 239 210 252 compressors / circuits 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 <td>Water flow user side</td> <td>(3)</td> <td>l/h</td> <td>30579</td> <td>30190</td> <td>34885</td> <td>36631</td> <td>42241</td> <td>42305</td> <td>46681</td> | Water flow user side | (3) | l/h | 30579 | 30190 | 34885 | 36631 | 42241 | 42305 | 46681 | | Vater pressure drop source side (3)(E) kPa 93 73 72 75 81 81 72 Aaximum current absorption A 91,0 90,0 112 114 130 128 151 tart up current A 356 224 380 293 399 307 420 tartup current with soft starter A 214 153 228 199 239 210 252 compressors / circuits 2/1 4/2 | Water pressure drop user side | (3)(E) | kPa | 65 | 49 | 52 | 52 | 57 | 57 | 50 | | Maximum current absorption A 91,0 90,0 112 114 130 128 151 tart up current A 356 224 380 293 399 307 420 tartup current with soft starter A 214 153 228 199 239 210 252 compressors / circuits 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 ound power level (5) dB(A) 87 79 87 83 87 83 89 ound power level, low-noise version (5) dB(A) 81 73 83 77 84 77 85 ound power level quiet version (5) dB(A) 75 67 77 71 78 71 79 | Water flow source side | (3) | l/h | 38688 | 38317 | 43571 | 46423 | 53818 | 53713 | 59452 | | tart up current tart up current | Water pressure drop source side | (3)(E) | kPa | 93 | 73 | 72 | 75 | 81 | 81 | 72 | | tartup current with soft starter A 214 153 228 199 239 210 252 compressors / circuits 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 4/2 2/1 6und power level (5) dB(A) 87 79 87 83 87 83 89 cound power level, low-noise version (5) dB(A) 81 73 83 77 84 77 85 cound power level quiet version (5) dB(A) 75 67 77 71 78 71 79 | Maximum current absorption | | A | 91,0 | 90,0 | 112 | 114 | 130 | 128 | 151 | | compressors / circuits 2/1 4/2 2/1 4/2 2/1 4/2 2/1 ound power level (5) dB(A) 87 79 87 83 87 83 89 ound power level, low-noise version (5) dB(A) 81 73 83 77 84 77 85 ound power level quiet version (5) dB(A) 75 67 77 71 78 71 79 | Start up current | | A | 356 | 224 | 380 | 293 | 399 | 307 | 420 | | ound power level (5) dB(A) 87 79 87 83 87 83 89 ound power level, low-noise version (5) dB(A) 81 73 83 77 84 77 85 ound power level quiet version (5) dB(A) 75 67 77 71 78 71 79 | Startup current with soft starter | | Α | 214 | 153 | 228 | 199 | 239 | 210 | 252 | | ound power level, low-noise version (5) dB(A) 81 73 83 77 84 77 85 ound power level quiet version (5) dB(A) 75 67 77 71 78 71 79 | Compressors / circuits | | | 2/1 | 4/2 | 2/1 | 4/2 | 2/1 | 4/2 | 2/1 | | ound power level quiet version (5) dB(A) 75 67 77 71 78 71 79 | Sound power level | (5) | dB(A) | 87 | 79 | 87 | 83 | 87 | 83 | 89 | | | Sound power level, low-noise version | (5) | dB(A) | 81 | 73 | 83 | 77 | 84 | 77 | 85 | | ransport / operating weight kg 706 1014 746 948 820 991 893 | Sound power level quiet version | (5) | dB(A) | 75 | 67 | 77 | 71 | 78 | 71 | 79 | | | Transport / operating weight | | kg | 706 | 1014 | 746 | 948 | 820 | 991 | 893 | ⁽¹⁾ Water temperature - user side 12°C/7°C, water temperature - dissipation side 30°C/35°C (EN14511:2022) (2) n efficiency values for heating and cooling are respectively calculated by the following formulas: [n = SCOP / 2,5 - F(1) - F(2)] e [n = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. (3) Water temperature - user side 40°C/45°C, water temperature - source side 10°C/7°C (EN14511:2022) (4) Seasonal energy efficiency class for LOW TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++ → D] (5) Sound power level measured according to ISO 9614 (E) EUROVENT certified data # Water chillers and heat pumps WRE | WRE | | | 244 | 274 | 302 | 314 | 364 | 384 | 454 | |--------------------------------------|--------
---------|-------|-------|-------|---------------|-------|-------|--------| | Power supply | | V-ph-Hz | | | | 400 - 3N - 50 | | | | | Cooling capacity | (1)(E) | kW | 238 | 271 | 299 | 314 | 362 | 388 | 457 | | Total power input | (1)(E) | kW | 54,7 | 62,3 | 66,8 | 71,4 | 82,1 | 88,0 | 93,7 | | EER | (1)(E) | | 4,35 | 4,35 | 4,48 | 4,40 | 4,41 | 4,40 | 4,88 | | SEER | (2)(E) | | 5,96 | 5,91 | 5,55 | 6,22 | 6,19 | 5,92 | 6,50 | | Water flow user side | (1) | I/h | 40958 | 46550 | 51446 | 54007 | 62223 | 66618 | 78595 | | Water pressure drop user side | (1)(E) | kPa | 44 | 46 | 44 | 46 | 47 | 47 | 30 | | Water flow source side | (1) | I/h | 44790 | 49915 | 56749 | 65705 | 75683 | 81057 | 94186 | | Water pressure drop source side | (1)(E) | kPa | 63 | 65 | 68 | 71 | 71 | 71 | 50 | | Heating capacity | (3)(E) | kW | 263 | 300 | 327 | 347 | 399 | 425 | 493 | | Total power input | (3)(E) | kW | 68,4 | 78,2 | 83,3 | 90,3 | 103 | 109 | 116 | | COP | (3)(E) | | 3,85 | 3,84 | 3,93 | 3,84 | 3,87 | 3,90 | 4,25 | | Heating energy efficiency class | (4) | | | | | A+++ | | | | | SCOP | (2)(E) | | 5,41 | 5,42 | 5,09 | 5,55 | 5,50 | 5,39 | 5,95 | | Water flow user side | (3) | I/h | 47109 | 53836 | 58708 | 62288 | 71491 | 76255 | 88389 | | Water pressure drop user side | (3)(E) | kPa | 59 | 62 | 60 | 64 | 64 | 63 | 45 | | Water flow source side | (3) | I/h | 59784 | 68402 | 75069 | 79238 | 91067 | 97284 | 115004 | | Water pressure drop source side | (3)(E) | kPa | 87 | 91 | 88 | 91 | 92 | 92 | 59 | | Maximum current absorption | | A | 144 | 161 | 166 | 182 | 224 | 240 | 261 | | Start up current | | Α | 360 | 377 | 510 | 447 | 492 | 508 | 529 | | Startup current with soft starter | | Α | 244 | 259 | 306 | 305 | 340 | 353 | 369 | | Compressors / circuits | | | 4/2 | 4/2 | 2/1 | 4/2 | 4/2 | 4/2 | 4/2 | | Sound power level | (5) | dB(A) | 83 | 85 | 91 | 90 | 90 | 90 | 92 | | Sound power level, low-noise version | (5) | dB(A) | 77 | 79 | 88 | 84 | 86 | 86 | 87 | | Sound power level quiet version | (5) | dB(A) | 71 | 73 | 82 | 78 | 80 | 80 | 81 | | Transport / operating weight | | kg | 1012 | 1121 | 1141 | 1425 | 1523 | 1555 | 1959 | ⁽¹⁾ Water temperature - user side 12°C / 7°C, water temperature - dissipation side 30°C / 35°C (EN14511:2022) (2) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. (3) Water temperature - user side 40°C / 45°C, water temperature - source side 10°C / 7°C (EN14511:2022) (4) Seasonal energy efficiency class for LOW TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++ → D] (5) Sound power level measured according to ISO 9614 (E) EUROVENT certified data | WRE | | | 504 | 564 | 606 | 636 | 696 | 746 | |--------------------------------------|--------|---------|--------|--------|---------|---------|--------|--------| | Power supply | | V-ph-Hz | | | 400 - 3 | BN - 50 | | | | Cooling capacity | (1)(E) | kW | 510 | 565 | 596 | 643 | 696 | 747 | | Total power input | (1)(E) | kW | 104 | 118 | 127 | 138 | 148 | 157 | | EER | (1)(E) | | 4,91 | 4,80 | 4,69 | 4,65 | 4,70 | 4,74 | | SEER | (2)(E) | | 6,56 | 6,52 | 6,56 | 6,51 | 6,53 | 6,57 | | Water flow user side | (1) | l/h | 87721 | 97016 | 102424 | 110464 | 119601 | 128286 | | Water pressure drop user side | (1)(E) | kPa | 35 | 43 | 43 | 47 | 46 | 47 | | Water flow source side | (1) | l/h | 104931 | 116374 | 123327 | 133169 | 143929 | 154171 | | Water pressure drop source side | (1)(E) | kPa | 60 | 70 | 71 | 76 | 75 | 75 | | Heating capacity | (3)(E) | kW | 548 | 610 | 644 | 697 | 751 | 807 | | Total power input | (3)(E) | kW | 130 | 147 | 157 | 171 | 184 | 196 | | COP | (3)(E) | | 4,22 | 4,15 | 4,10 | 4,08 | 4,08 | 4,12 | | Heating energy efficiency class | (4) | | | | A+ | ++ | | | | SCOP | (2)(E) | | 5,92 | 5,88 | 5,97 | 5,85 | 5,86 | 5,88 | | Water flow user side | (3) | l/h | 98259 | 109416 | 115479 | 124926 | 134660 | 144717 | | Water pressure drop user side | (3)(E) | kPa | 53 | 63 | 63 | 67 | 66 | 67 | | Water flow source side | (3) | l/h | 127862 | 141965 | 149123 | 161213 | 174027 | 187468 | | Water pressure drop source side | (3)(E) | kPa | 70 | 86 | 85 | 92 | 91 | 93 | | Maximum current absorption | | Α | 303 | 317 | 328 | 370 | 412 | 454 | | Start up current | | Α | 571 | 661 | 593 | 638 | 680 | 722 | | Startup current with soft starter | | Α | 403 | 460 | 421 | 457 | 491 | 524 | | Compressors / circuits | | | 4/2 | 4/2 | 6/2 | 6/2 | 6/2 | 6/2 | | Sound power level | (5) | dB(A) | 92 | 93 | 94 | 94 | 94 | 94 | | Sound power level, low-noise version | (5) | dB(A) | 88 | 90 | 88 | 89 | 89 | 90 | | Sound power level quiet version | (5) | dB(A) | 82 | 84 | 82 | 83 | 83 | 84 | | Transport / operating weight | | kg | 2008 | 2075 | 2669 | 2775 | 2734 | 2838 | ⁽¹⁾ Water temperature - user side 12°C/7°C, water temperature - dissipation side 30°C/35°C (EN14511:2022) (2) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP /2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. (3) Water temperature - user side 40°C/45°C, water temperature - source side 10°C/7°C (EN14511:2022) (4) Seasonal energy efficiency class for LOW TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++ → D] (5) Sound power level measured according to 1SO 9614 (E) EUROVENT certified data # Water chillers and heat pumps WRE # DIMENSIONAL DRAWINGS | LEGEND WRE C | | | |--------------|---|--| | 1 | Dissipation side - outlet (Victaulic 2") | | | 2 | Dissipation side - inlet Victaulic (Victaulic 2") | | | 3 | User side - inlet (Victaulic 2") | | | 4 | User side - outlet (Victaulic 2") | | | 5 | De-superheater water outlet 1" | | | 6 | Desuperheater water inlet 1" | | | 7 | Vibration dumpers | | | 8 | Lifting points | | | 9 | Power supply input | | | 10 | User interface | | | CHILLE | CHILLER FLOW SWITH POSITION: 2-3 | | | CLOSIN | CLOSING PANELLING AVAILABLE ON REQUEST | | | LEGEN | ID WRE H | | |-------|---|--| | 1 | Dissipation side - inlet Victaulic (Victaulic 2") | | | 2 | Dissipation side - outlet (Victaulic 2") | | | 3 | User side - inlet (Victaulic 2") | | | 4 | User side - outlet (Victaulic 2") | | | 5 | De-superheater water outlet 1" | | | 6 | Desuperheater water inlet 1" | | | 7 | Vibration dumpers | | | 8 | Lifting points | | | 9 | Power supply input | | | 10 | User interface | | | HEAT | PUMP FLOW SWITH POSITION: 1-3 | | | CLOSI | CLOSING PANELLING AVAILABLE ON REQUEST | | | 1 F | GF | NΝ | WE | ₽F | r | |-----|----|----|----|----|---| | | , II II 2 | |--|---| | 1 | Dissipation side - outlet (Victaulic 2") | | 2 | Dissipation side - inlet Victaulic (Victaulic 2") | | 3 | User side - inlet (Victaulic 2") | | 4 | User side - outlet (Victaulic 2") | | 5 | De-superheater water outlet 1" | | 6 | Desuperheater water inlet 1" | | 7 | Vibration dumpers | | 8 | Lifting points | | 9 | Power supply input | | 10 | User interface | | 11 | Outlet safety valve G. 3/4" F (only 152) | | CHILLER FLOW SWITH POSITION: 2-3 | | | CLOSING PANELLING AVAILABLE ON REQUEST | | | 1 | Dissipation side - inlet Victaulic (Victaulic 2") | |--------|---| | 2 | Dissipation side - outlet (Victaulic 2") | | 3 | User side - inlet (Victaulic 2") | | 4 | User side - outlet (Victaulic 2") | | 5 | De-superheater water outlet 1" | | 6 | Desuperheater water inlet 1" | | 7 | Vibration dumpers | | 8 | Lifting points | | 9 | Power supply input | | 10 | User interface | | 11 | Outlet safety valve G. 3/4" F (only 152) | | HEAT P | UMP FLOW SWITH POSITION: 1-3 | | CLOSIN | IG PANELLING AVAILABLE ON REQUEST | # Water chillers and heat pumps WRE # DIMENSIONAL DRAWINGS | LEGEN | LEGEND WKE C | | |--------|--|--| | 1 | Dissipation side - outlet (Victaulic 3") | | | 2 | Dissipation side - inlet (Victaulic 3") | | | 3 | User side - inlet (Victaulic 3") | | | 4 | User side - outlet (Victaulic 3") | | | 5 | De-superheater water outlet 2" | | | 6 | Desuperheater water inlet 2" | | | 7 | Vibration dumpers | | | 8 | Lifting points | | | 9 | Power supply input | | | 10 | User interface | | | 11 | Outlet safety valve G. 3/4" F | | | CHILLE | CHILLER FLOW SWITH POSITION: 2-3 | | **CLOSING PANELLING AVAILABLE ON REQUEST** I ECENID WIDE C | LEGEN | LEGEND WRE H | | |--------|--|--| | 1 | Dissipation side - inlet (Victaulic 3") | | | 2 | Dissipation side - outlet (Victaulic 3") | | | 3 | User side - inlet (Victaulic 3") | | | 4 | User side - outlet (Victaulic 3") | | | 5 | De-superheater water outlet 2" | | | 6 | Desuperheater water inlet 2" | | | 7 | Vibration dumpers | | | 8 | Lifting points | | | 9 | Power supply input | | | 10 | User interface | | | 11 | Outlet safety valve G. 3/4" F | | | HEAT F | PUMP FLOW SWITH POSITION: 1-3 | | | CLOSII | NG PANELLING AVAILABLE ON REQUEST | | | 1 | FG | FN | n | W | RF | • | |---|----|----|---|---|----|---| | LLGLIN | LEGEND WILL C | | |--------|--|--| | 1 | User side - inlet (Victaulic 3") | | | 2 | User side - outlet (Victaulic 3") | | | 3 | Dissipation side - outlet (Victaulic 3") | | | 4 | Dissipation side - inlet (Victaulic 3") | | | 5 |
De-superheater water outlet 2" | | | 6 | Desuperheater water inlet 2" | | | 7 | Vibration dumpers | | | 8 | Lifting points | | | 9 | Power supply input | | | 10 | User interface | | | CHILLE | CHILLER FLOW SWITH POSITION: 1-4 | | | CLOSIN | CLOSING PANELLING AVAILABLE ON REQUEST | | | 1 | User side - inlet (Victaulic 3") | |--------|--| | 2 | User side - outlet (Victaulic 3") | | 3 | Dissipation side - inlet (Victaulic 3") | | 4 | Dissipation side - outlet (Victaulic 3") | | 5 | De-superheater water outlet 2" | | 6 | Desuperheater water inlet 2" | | 7 | Vibration dumpers | | 8 | Lifting points | | 9 | Power supply input | | 10 | User interface | | HEAT F | PUMP FLOW SWITH POSITION: 1-3 | | CLOSII | NG PANELLING AVAILABLE ON REQUEST | | | | # Water chillers and heat pumps WRE # DIMENSIONAL DRAWINGS | LEG | FND | WRE | • | |-----|-----|-----|---| | 1 | Dissipation side - outlet (Victaulic 3") | | |--------|---|--| | 2 | Dissipation side - inlet (Victaulic 3") | | | 3 | User side - inlet (Victaulic 3") | | | 4 | User side - outlet (Victaulic 3") | | | 5 | Heat exchanger outlet 2" | | | 6 | Heat exchanger inlet 2" | | | 7 | Low pressure safety valve outlet G. 3/4" F | | | 8 | High-pressure relief valve outlet G. 3/4" F | | | 9 | Vibration dumpers | | | 10 | User interface | | | 11 | Lifting points | | | 12 | Power supply input | | | CHILLE | CHILLER FLOW SWITH POSITION: 2-3 | | | CLOSIN | CLOSING PANELLING AVAILABLE ON REQUEST | | | LEGEN | IV WKE H | |--------|---| | 1 | Dissipation side - inlet (Victaulic 3") | | 2 | Dissipation side - outlet (Victaulic 3") | | 3 | User side - inlet (Victaulic 3") | | 4 | User side - outlet (Victaulic 3") | | 5 | Heat exchanger outlet 2" | | 6 | Heat exchanger inlet 2" | | 7 | Low pressure safety valve outlet G. 3/4" F | | 8 | High-pressure relief valve outlet G. 3/4" F | | 9 | Vibration dumpers | | 10 | User interface | | 11 | Lifting points | | 12 | Power supply input | | HEAT I | PUMP FLOW SWITH POSITION: 1-3 | | CLOSII | NG PANELLING AVAILABLE ON REQUEST | | | | | - 1 | FG | FN | n | W | RF | r | |-----|----|----|---|---|----|---| | LEGENI |) WRE C | |--------|--| | 1 | User side - inlet (Victaulic 3") | | 2 | User side - outlet (Victaulic 3") | | 3 | Dissipation side - outlet (Victaulic 3") | | 4 | Dissipation side - inlet (Victaulic 3") | | 5 | De-superheater water outlet 2" | | 6 | Desuperheater water inlet 2" | | 7 | Vibration dumpers | | 8 | Lifting points | | 9 | Power supply input | | 10 | User interface | | 11 | Outlet safety valve G. 1" F | | CHILLE | R FLOW SWITH POSITION: 1-4 | | CLOSIN | G PANELLING AVAILABLE ON REQUEST | | | | | | NG PANELLING AVAILABLE ON REQUEST | |--------|--| | HEAT F | PUMP FLOW SWITH POSITION: 1-3 | | 11 | Outlet safety valve G. 1" F | | 10 | User interface | | 9 | Power supply input | | 8 | Lifting points | | 7 | Vibration dumpers | | 6 | Desuperheater water inlet 2" | | 5 | De-superheater water outlet 2" | | 4 | Dissipation side - outlet (Victaulic 3") | | 3 | Dissipation side - inlet (Victaulic 3") | | 2 | User side - outlet (Victaulic 3") | | 1 | User side - inlet (Victaulic 3") | # Water chillers and heat pumps WRE # DIMENSIONAL DRAWINGS | LEGEN | D WRE C | |--------|--| | 1 | User side - inlet (Victaulic 4") | | 2 | User side - outlet (Victaulic 4") | | 3 | Dissipation side - outlet (Victaulic 4") | | 4 | Dissipation side - inlet (Victaulic 4") | | 5 | De-superheater water outlet 2" | | 6 | Desuperheater water inlet 2" | | 7 | Vibration dumpers | | 8 | Lifting points | | 9 | Power supply input | | 10 | User interface | | 11 | Low pressure safety valve outlet WRE 454-504 G. 1" F;
WRE 564 G. 3/4" F | | 12 | High-pressure relief valve outlet WRE 564 G. 1" M | | CHILLE | R FLOW SWITH POSITION: 1-4 | **CLOSING PANELLING AVAILABLE ON REQUEST** | LEGEN | D WKE H | |--------|--| | 1 | User side - inlet (Victaulic 4") | | 2 | User side - outlet (Victaulic 4") | | 3 | Dissipation side - inlet (Victaulic 4") | | 4 | Dissipation side - outlet (Victaulic 4") | | 5 | De-superheater water outlet 2" | | 6 | Desuperheater water inlet 2" | | 7 | Vibration dumpers | | 8 | Lifting points | | 9 | Power supply input | | 10 | User interface | | 11 | Low pressure safety valve outlet WRE 454-504 G. 1" F;
WRE 564 G. 3/4" F | | 12 | High-pressure relief valve outlet WRE 564 G. 1" M | | HEAT I | PUMP FLOW SWITH POSITION: 1-3 | | CLOSII | NG PANELLING AVAILABLE ON REQUEST | | - 1 | FG | FN | D | W | RF | (| |-----|----|----|---|---|----|---| | LEGEN | D MKE C | |--------|--| | 1 | User side - inlet (Victaulic 5") | | 2 | User side - outlet (Victaulic 5") | | 3 | Dissipation side - outlet (Victaulic 5") | | 4 | Dissipation side - inlet (Victaulic 5") | | 5 | De-superheater water outlet 2" | | 6 | Desuperheater water inlet 2" | | 7 | Vibration dumpers | | 8 | Lifting points | | 9 | Power supply input | | 10 | User interface | | 11 | Outlet safety valve G. 1" 1/4 F | | CHILLE | R FLOW SWITH POSITION: 1-4 | | CLOSIN | IG PANELLING AVAILABLE ON REQUEST | | | | | 1 | User side - inlet (Victaulic 5") | |--------|--| | 2 | User side - outlet (Victaulic 5") | | 3 | Dissipation side - inlet (Victaulic 5") | | 4 | Dissipation side - outlet (Victaulic 5") | | 5 | De-superheater water outlet 2" | | 6 | Desuperheater water inlet 2" | | 7 | Vibration dumpers | | 8 | Lifting points | | 9 | Power supply input | | 10 | User interface | | 11 | Outlet safety valve G. 1" 1/4 F | | HEAT P | PUMP FLOW SWITH POSITION: 1-3 | | CLOSIN | IG PANELLING AVAILABLE ON REQUEST | | | | # Indoor or outdoor packaged unit # WLE 42 kW - 750 kW refrigerant A2L gas leak Scroll compressor Heating/ Cooling - » Refrigerant R454B (GWP=467) - » Electronic expansion valve - » Up to 6 compressors - » 1 or 2 cooling circuits - » Remote connectivity with the most common protocols - » Compact dimensions - » 3 different acoustic configurations - » High seasonal efficiency values - » Production of hot water up to 55°C or cold water down to -8 ° C # Water-cooled packaged units for indoor or outdoor installation with high seasonal efficiency and low-GWP refrigerant WLE is the new Galletti series of self-contained reversible heat pumps and water chillers for indoor or outdoors (with IP54 electrical panel option) installation, suitable for both air conditioning and industrial process applications. R454B is a next generation A2L refrigerant with a GWP of only 467, one of the lowest on the market. This GWP value ensures that the WLE range complies with the gradual reduction of greenhouse gas emissions required by the F-GAS regulation, down to the stricter limits foreseen for The range covers capacities from 40 kW up to a maximum of 750 kW and is characterised by extremely high levels of seasonal efficiency (in compliance with ErP 2021 requirements) and reduced space requirements in order to facilitate access to technical compartments (for capacities of up to 500 kW, the width and height are less than 96 cm and 196 cm respectively). In order to increase the efficiency at partial loads, WLE models are provided with tandem or trio solutions (2 or 3 compressors on a single circuit) and equipped with electronic expansion valve as standard. Both single and dual circuit versions are available. The use of top quality components at the cutting edge of technology in cooling, hydraulic, and electrical systems makes WLE chillers state of the art in terms of efficiency, reliability, and operating limits. In fact, the ability to produce water from -8 °C to 55 °C and use any type of natural source for dissipation is guaranteed: soil, ground water, or outside air. The high configurability of the series, which is in the DNA of Galletti, is guaranteed by 2 different versions, with and without closing panels, and 3 different acoustic configurations: standard, low noise, and super low noise, able to ensure a sound power level reduction of up to 12 dB(A). The range of the configuration available is completed by the possibility of producing hot water up to 60 °C at zero cost through partial heat recovery. Lastly, the advanced microprocessor that regulates the operation of the unit allows: the control of a maximum of 2 pumps on the equipment side and 2 pumps on the source side, on/off or modulating, the possibility of cascade connection of up to 6 units and management of reversibility on both the gas side and the water side. The possibility of keeping the evaporator indoors means there is no need to add glycol to the water inside the system. In addition, you can keep all components requiring maintenance in an easily accessible room. ### MAIN COMPONENTS ### Structure Made in galvanised steel sheet with a polyester powder coating for outdoors. On request the compressor compartment is completely sealed and accessible on 3 sides thanks to easily removable panels that greatly simplify all maintenance and inspection operations. The unit can be fitted with electric control board with protection rating IP54 which makes it suitable for outdoor installation. ### Compressori scroll Scroll-type compressors in a tandem or trio configuration equipped with IDV valve. The IDV intermediate delivery valve technology allows the compressor to avoid losses caused by overcompression and, consequently, the additional work the motor has to perform in partial-load operation, saving energy and improving seasonal and partial-load efficiency from 3% to 10%. ### Very low GWP refrigerant Use of R454B refrigerant with low environmental impact. R454B is a next-generation A2L refrigerant with a GWP of only 467, one of the lowest on the
market. This GWP value ensures the range complies with the gradual reduction of quotas of greenhouse refrigerants in the European market required by the F-GAS regulation, down to the stricter limits foreseen for 2030 ### **Heat exchangers** All units have heat exchangers with braze-welded AISI 316 austenitic stainless steel plates and connections made of AISI 316 L, characterised by a reduced carbon content to facilitate brazing. ### Safety procedures in case of refrigerant leakage As a standard feature, the units are equipped with leak detection sensors in the electrical control board and near the cooling circuit. The microprocessor manages the procedures for securing and shutting down the unit in case of refrigerant leakage, also making it possible to divert the power supply of the control unit that collects the information from the leak sensors on a low-voltage emergency line. This function allows the complete disconnection of the power to the unit during maintenance operations, while leaving all the safety systems enabled. | CONFIGURATOR | | | | | | | | | | | | | | |---|----------|-------|---|---|---|---|---|---|---|---|---|----|----| | The models are completely configurable by selecting the | Version | Field | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | version and the options. To the right is shown an example of configuration. | WLE132HL | | 2 | В | 0 | 3 | 3 | 1 | 0 | 0 | 0 | Р | 1 | To verify the compatibility of the options, use the selection software or the price list. ### AVAILABLE VERSIONS ### Only cooling versions WLE...CLG Standard execution Low noise execution Super low noise execution ### **Heat pump versions** WLE...HSG WLE...HLG WLE...HQG Reversible, standard execution Reversible, low noise execution Reversible, quite execution ### **CONFIGURATION OPTIONS** - **Power supply** - n 400/3/50 + N - 400/3/50 - 400/3/50 + N + Circuit breakers - 400/3/50 + circuit breakers - Control microprocessor and lamination device - ${\sf Advanced} + {\sf electronic} \, {\sf expansion} \, {\sf valve}$ - 3 Partial heat recovery - Absent - Desuperheater (partial heat recovery) - Management of source side pumps* - Single pump - Single pump + condensation control with 0-10V modulated output signal - Dual pump + condensation control with 0-10V modulated output signal - User water flow modulation* 5 - Single pump - Dual pump - Single pump + output signal with water flow modulation in ΔT logic = cost - Dual pump + output signal with water flow modulation in ΔT logic = cost - Single pump + output signal with water flow modulation in T logic = cost Dual pump + output signal with water flow modulation in T logic = cost **Remote communication** - 6 - Absent - RS485 serial card (Modbus or Carel protocol) - Ethernet card (SNMP or BACNET protocol) + clock card - Ethernet card + clock card + monitoring software Anti vibration shock mounts - Absent - Rubber vibration dampers at the base of the unit - Spring vibration dampers at the base of the unit - Packing 0 - Standard - Wooden cage - Wooden crate - Remote control - Simplified remote control panel - Remote display for programmable microprocessor - 10 Anti-intrusion panelling - Absent - Present (standard for Q version and mandatory for field 11 = 1) - **Unit installation** 11 - Indoor - Outdoor *PUMP NOT SUPPLIED | ACC | ESSORIES | | | |-----|---|---|--| | A | Power factor capacitors | L | Filter regulating kit | | В | Soft starter | М | Set point compensation outdoor temperature probe | | C | Service kit (advanced controller required) | N | Compressor tandem/trio isolation valves | | D | User side water flow reversal valve management | P | Unit lifting pipes | | E | ON/OFF status of the compressors | Q | Temperature probe for pump shutdown on the primary circuit | | F | Remote control for step capacity limit (advanced controller required) | T | Mains power analyzer for monitoring and reducing power consumption | | G | Configurable digital alarm board (advanced controller required) | | Set-point modification with 4-20mA signal | | I | Two pairs of Victaulic joints | | | # WLE C WATER CHILLERS RATED TECHNICAL DATA | WLE | | | 052 | 062 | 072 | 082 | 092 | 122 | 132 | |--------------------------------------|--------|---------|-------|-------|-------|-----------|-------|-------|-------| | Power supply | | V-ph-Hz | | | | 400/3N/50 | | | | | Cooling capacity | (1)(E) | kW | 45,3 | 57,9 | 66,3 | 76,8 | 85,7 | 116 | 131 | | Total power input | (1)(E) | kW | 10,5 | 13,5 | 15,2 | 17,7 | 19,8 | 26,3 | 29,9 | | EER | (1)(E) | | 4,30 | 4,27 | 4,36 | 4,35 | 4,32 | 4,39 | 4,37 | | SEER | (2)(E) | | 5,72 | 5,98 | 6,02 | 5,78 | 5,95 | 5,81 | 5,80 | | Water flow user side | (1) | I/h | 7796 | 9977 | 11418 | 13231 | 14763 | 19893 | 22476 | | Water pressure drop user side | (1)(E) | kPa | 31 | 49 | 45 | 45 | 43 | 45 | 35 | | Water flow source side | (1) | l/h | 9518 | 12143 | 13864 | 16074 | 17969 | 24151 | 27369 | | Water pressure drop source side | (1)(E) | kPa | 48 | 75 | 68 | 67 | 65 | 66 | 53 | | Maximum current absorption | | Α | 29,0 | 36,0 | 42,0 | 49,0 | 57,0 | 72,0 | 81,0 | | Start up current | | Α | 112 | 161 | 211 | 218 | 178 | 288 | 296 | | Startup current with soft starter | | Α | 67 | 97 | 127 | 131 | 107 | 173 | 178 | | Compressors / circuits | | | | | | 2/1 | | | | | Sound power level | (3) | dB(A) | 73 | 75 | 76 | 77 | 80 | 80 | 82 | | Sound power level quiet version | (3) | dB(A) | 61 | 63 | 64 | 65 | 68 | 68 | 70 | | Sound power level, low-noise version | (3) | dB(A) | 67 | 69 | 70 | 71 | 74 | 74 | 76 | | Weight without options | | kg | 310 | 328 | 343 | 361 | 408 | 560 | 619 | | | | _ | | | | | | | | | WLE | | | 152 | 154 | 182 | 184 | 212 | 214 | 242 | | Power supply | | V-ph-Hz | | | | 400/3N/50 | | | | | Cooling capacity | (1)(E) | kW | 161 | 144 | 177 | 177 | 208 | 203 | 235 | | Total power input | (1)(E) | kW | 37,2 | 33,2 | 39,5 | 40,6 | 46,7 | 46,5 | 51,8 | | EER | (1)(E) | | 4,33 | 4,34 | 4,47 | 4,36 | 4,46 | 4,38 | 4,54 | | SEER | (2)(E) | | 6,06 | 5,54 | 6,09 | 6,48 | 5,84 | 6,11 | 5,78 | | Water flow user side | (1) | I/h | 27732 | 24792 | 30369 | 30429 | 35841 | 34985 | 40465 | | Water pressure drop user side | (1)(E) | kPa | 51 | 24 | 29 | 35 | 39 | 38 | 49 | | Water flow source side | (1) | I/h | 33758 | 30291 | 36888 | 37093 | 43502 | 42614 | 48918 | | Water pressure drop source side | (1)(E) | kPa | 78 | 37 | 44 | 53 | 60 | 57 | 74 | | Maximum current absorption | | Α | 91,0 | 90,0 | 112 | 114 | 130 | 128 | 151 | | Start up current | | Α | 356 | 224 | 380 | 293 | 399 | 307 | 420 | | Startup current with soft starter | | Α | 214 | 153 | 228 | 199 | 239 | 210 | 252 | | Compressors / circuits | | | 2/1 | 4/2 | 2/1 | 4/2 | 2/1 | 4/2 | 2/1 | | Sound power level | (3) | dB(A) | 87 | 79 | 87 | 83 | 89 | 83 | 89 | | Sound power level quiet version | (3) | dB(A) | 75 | 67 | 77 | 71 | 78 | 71 | 79 | | Sound power level, low-noise version | (3) | dB(A) | 81 | 73 | 83 | 77 | 84 | 77 | 85 | 997 688 727 869 Weight without options ⁽¹⁾ Water temperature - user side 12°C / 7°C, water temperature - dissipation side 30°C (EN14511:2022) (2) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document ErP 2009/125/EC DIRECTIVE in the catalogue introducing pages, or to the EN14825:2022 regulation. ⁽³⁾ Sound power level measured according to ISO 9614 (E) EUROVENT certified data # WLE C WATER CHILLERS RATED TECHNICAL DATA | WLE | | | 244 | 274 | 314 | 364 | 384 | 454 | 504 | |--------------------------------------|--------|---------|-------|-------|-------|-----------|-------|-------|-------| | Power supply | | V-ph-Hz | | | | 400/3N/50 | | | | | Cooling capacity | (1)(E) | kW | 231 | 262 | 296 | 349 | 376 | 419 | 478 | | Total power input | (1)(E) | kW | 51,9 | 58,8 | 66,6 | 76,6 | 81,9 | 89,3 | 99,2 | | EER | (1)(E) | | 4,45 | 4,46 | 4,44 | 4,56 | 4,59 | 4,69 | 4,81 | | SEER | (2)(E) | | 6,14 | 6,08 | 6,40 | 6,38 | 6,11 | 6,71 | 6,77 | | Water flow user side | (1) | I/h | 39728 | 45112 | 50884 | 59992 | 64563 | 72043 | 82068 | | Water pressure drop user side | (1)(E) | kPa | 42 | 43 | 41 | 44 | 44 | 25 | 31 | | Water flow source side | (1) | I/h | 48233 | 54764 | 61834 | 72580 | 78025 | 86936 | 98537 | | Water pressure drop source side | (1)(E) | kPa | 61 | 64 | 63 | 66 | 66 | 43 | 53 | | Maximum current absorption | | Α | 144 | 161 | 182 | 224 | 240 | 261 | 303 | | Start up current | | Α | 360 | 377 | 447 | 492 | 508 | 529 | 571 | | Startup current with soft starter | | Α | 244 | 259 | 305 | 340 | 353 | 369 | 403 | | Compressors / circuits | | | 4/2 | | | | | | | | Sound power level | (3) | dB(A) | 83 | 85 | 90 | 90 | 90 | 92 | 92 | | Sound power level quiet version | (3) | dB(A) | 71 | 73 | 78 | 80 | 80 | 81 | 82 | | Sound power level, low-noise version | (3) | dB(A) | 77 | 79 | 84 | 86 | 86 | 87 | 88 | | Weight without options | | kg | 992 | 1101 | 1393 | 1491 | 1523 | 1925 | 1968 | | WLE | | | 606 | 636 | 696 | 746 | |--------------------------------------|--------|---------|--------|--------|--------|--------| | Power supply | | V-ph-Hz | | 400/3 | 3N/50 | | | Cooling capacity | (1)(E) | kW | 557 | 612 | 664 | 720 | | Total power input | (1)(E) | kW | 120 | 134 | 144 | 151 | | EER | (1)(E) | | 4,66 | 4,56 | 4,60 | 4,76 | | SEER | (2)(E) | | 6,69 | 6,73 | 6,72 | 6,80 | | Water flow user side | (1) | I/h | 95729 | 105158 | 114046 | 123665 | | Water pressure drop user side | (1)(E) | kPa | 38 | 43 | 52 | 60 | | Water flow source side | (1) | I/h | 115496 | 127315 | 137734 | 148470 | | Water pressure drop source side | (1)(E) | kPa | 63 | 62 | 71 | 70 | | Maximum current absorption | | Α
 328 | 370 | 412 | 454 | | Start up current | | Α | 593 | 638 | 680 | 722 | | Startup current with soft starter | | Α | 421 | 457 | 491 | 524 | | Compressors / circuits | | | 6/2 | | | - | | Sound power level | (3) | dB(A) | 94 | 94 | 94 | 94 | | Sound power level quiet version | (3) | dB(A) | 82 | 83 | 83 | 84 | | Sound power level, low-noise version | (3) | dB(A) | 88 | 89 | 89 | 90 | | Weight without options | | kg | 2592 | 2689 | 2648 | 2752 | Water temperature - user side 12°C/7°C, water temperature - dissipation side 30°C/35°C (EN14511:2022) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. ⁽³⁾ Sound power level measured according to ISO 9614 (E) EUROVENT certified data ### WLE H NOT REVERSIBLE HEAT PUMPS TECHNICAL DATA | WLE | | | 052 | 062 | 072 | 082 | 092 | 122 | 132 | |---|--------------------------------|------------------------|---|---|--|--|--|--|---| | Power supply | | V-ph-Hz | | | | 400/3N/50 | | | | | Cooling capacity | (1)(E) | kW | 44,9 | 55,6 | 65,4 | 76,4 | 85,7 | 114 | 130 | | Total power input | (1)(E) | kW | 11,6 | 13,9 | 16,1 | 18,9 | 20,6 | 28,3 | 32,0 | | EER | (1)(E) | | 3,87 | 4,00 | 4,06 | 4,04 | 4,16 | 4,04 | 4,07 | | SEER | (2)(E) | | 5,64 | 5,89 | 5,93 | 5,69 | 5,86 | 5,72 | 5,71 | | Water flow user side | (1) | I/h | 7733 | 9570 | 11263 | 13152 | 14752 | 19655 | 22430 | | Water pressure drop user side | (1)(E) | kPa | 31 | 45 | 44 | 44 | 43 | 44 | 35 | | Water flow source side | (1) | I/h | 9628 | 11798 | 13857 | 16198 | 18082 | 24237 | 27671 | | Water pressure drop source side | (1)(E) | kPa | 49 | 71 | 68 | 68 | 66 | 67 | 54 | | Heating capacity | (3)(E) | kW | 49,0 | 64,3 | 75,3 | 87,9 | 96,6 | 130 | 148 | | Total power input | (3)(E) | kW | 13,2 | 17,0 | 19,5 | 21,8 | 24,1 | 33,0 | 37,5 | | COP | (3)(E) | KIT | 3,71 | 3,78 | 3,86 | 4,03 | 4,01 | 3,94 | 3,95 | | Heating energy efficiency class | (4) | | 3,71 | 3,10 | 3,00 | A+++ | 1,01 | 3,71 | 3,73 | | SCOP | (2)(E) | | 5,41 | 5,49 | 5,52 | 5,45 | 5,23 | 5,48 | 5,52 | | Water flow user side | (3) | I/h | 9048 | 11481 | 13451 | 15697 | 17258 | 23403 | 26532 | | Water pressure drop user side | (3)(E) | kPa | 44 | 68 | 64 | 65 | 60 | 63 | 50 | | Water flow source side | (3) | I/h | 11247 | 14471 | 17045 | 20155 | 22073 | 29829 | 33678 | | Water pressure drop source side | (3)(E) | kPa | 61 | 95 | 93 | 96 | 88 | 93 | 72 | | Maximum current absorption | (3)(L) | A | 29,0 | 36,0 | 42,0 | 49,0 | 57,0 | 72,0 | 81,0 | | Start up current | | A | 112 | 161 | 211 | 218 | 178 | 288 | 296 | | Startup current with soft starter | | A | 67 | 97 | 127 | 131 | 107 | 173 | 178 | | Compressors / circuits | | A | 0/ | 31 | 127 | 2/1 | 107 | 1/3 | 1/0 | | Sound power level | (5) | 4D(A) | 72 | 7.5 | 76 | 77 | 80 | 80 | 82 | | <u>'</u> | (5) | dB(A) | 73 | 75 | 70 | - | | 74 | 76 | | Sound power level, low-noise version | (5) | dB(A) | 67 | 69 | | 71
65 | 74 | | 70 | | Sound power level quiet version | (5) | dB(A) | 61 | 63 | 64 | | 68 | 68 | | | Weight without options | | kg | 315 | 334 | 353 | 371 | 418 | 572 | 635 | | WLE | | | 152 | 154 | 182 | 184 | 212 | 214 | 242 | | Power supply | | V-ph-Hz | | | | 400/3N/50 | | | | | Cooling capacity | (1)(E) | kW | 149 | 145 | 174 | 177 | 204 | 203 | 230 | | Total power input | (1)(E) | kW | 37,0 | 36,3 | 42,4 | 43,7 | 49,1 | 51,2 | 54,4 | | EER | (1)(E) | | 4,02 | 4,00 | 4,11 | 4,05 | 4,16 | 3,96 | 4,23 | | SEER | (2)(E) | | 5,97 | 5,46 | 6,00 | 6,38 | 5,75 | 6,02 | 5,69 | | Water flow user side | (1) | l/h | 25587 | 24972 | 29949 | 30431 | 35122 | 34845 | 39546 | | Water pressure drop user side | (1)(E) | kPa | 44 | 25 | 28 | 35 | 38 | 37 | 47 | | Water flow source side | (1) | I/h | 31604 | 30973 | 36938 | 37608 | 43180 | 43251 | 48433 | | Water pressure drop source side | (1)(E) | kPa | 69 | 39 | 44 | 55 | 59 | 59 | 72 | | Heating capacity | (3)(E) | kW | 167 | 163 | 196 | 200 | 237 | 230 | 261 | | Total power input | (3)(E) | kW | 42,6 | 41,3 | 48,6 | 50,0 | 57,5 | 57,2 | 63,2 | | COP | (3)(E) | | 3,92 | 3,95 | 4,03 | 4,00 | 4,12 | 4,02 | 4,13 | | Heating energy efficiency class | | | | ., | , | A+++ | , | | , - | | . 3 3/ / | (4) | | | | | | | | | | SCOP | (4)
(2)(E) | | 5,59 | 5,28 | 5,61 | 5,79 | 5,68 | 5.88 | 5,47 | | | (2)(E) | I/h | 5,59
30026 | 5,28
29241 | 5,61
35166 | 5,79
35854 | 5,68
42453 | 5,88
41240 | 5,47
46757 | | Water flow user side | (2)(E)
(3) | I/h
kPa | 30026 | 29241 | 35166 | 35854 | 42453 | 41240 | 46757 | | Water flow user side
Water pressure drop user side | (2)(E)
(3)
(3)(E) | kPa | 30026
63 | 29241
35 | 35166
41 | 35854
50 | 42453
57 | 41240
54 | 46757
68 | | Water flow user side
Water pressure drop user side
Water flow source side | (2)(E)
(3)
(3)(E)
(3) | kPa
I/h | 30026
63
38117 | 29241
35
36958 | 35166
41
44800 | 35854
50
45642 | 42453
57
54595 | 41240
54
52583 | 46757
68
60304 | | Water flow user side
Water pressure drop user side
Water flow source side
Water pressure drop source side | (2)(E)
(3)
(3)(E) | kPa
I/h
kPa | 30026
63
38117
90 | 29241
35
36958
50 | 35166
41
44800
58 | 35854
50
45642
73 | 42453
57
54595
83 | 41240
54
52583
78 | 46757
68
60304
100 | | Water flow user side
Water pressure drop user side
Water flow source side
Water pressure drop source side
Maximum current absorption | (2)(E)
(3)
(3)(E)
(3) | kPa
I/h
kPa
A | 30026
63
38117
90
91,0 | 29241
35
36958
50
90,0 | 35166
41
44800
58
112 | 35854
50
45642
73
114 | 42453
57
54595
83
130 | 41240
54
52583
78
128 | 46757
68
60304
100
151 | | Water flow user side Water pressure drop user side Water flow source side Water pressure drop source side Maximum current absorption Start up current | (2)(E)
(3)
(3)(E)
(3) | kPa
I/h
kPa
A | 30026
63
38117
90
91,0
356 | 29241
35
36958
50
90,0
224 | 35166
41
44800
58
112
380 | 35854
50
45642
73
114
293 | 42453
57
54595
83
130
399 | 41240
54
52583
78
128
307 | 46757
68
60304
100
151
420 | | Water flow user side
Water pressure drop user side
Water flow source side
Water pressure drop source side
Maximum current absorption | (2)(E)
(3)
(3)(E)
(3) | kPa
I/h
kPa
A | 30026
63
38117
90
91,0 | 29241
35
36958
50
90,0 | 35166
41
44800
58
112 | 35854
50
45642
73
114 | 42453
57
54595
83
130 | 41240
54
52583
78
128 | 46757
68
60304
100
151 | (5) dB(A) 81 73 83 77 84 77 85 Sound power level, low-noise version GAPCBX251A [|] Number | # WLE H NOT REVERSIBLE HEAT PUMPS TECHNICAL DATA | WLE | | | 244 | 274 | 314 | 364 | 384 | 454 | 504 | |--------------------------------------|--------|---------|-------|-------|-------|-----------|-------|--------|--------| | Power supply | | V-ph-Hz | | • | | 400/3N/50 | | | • | | Cooling capacity | (1)(E) | kW | 229 | 261 | 296 | 349 | 376 | 420 | 474 | | Total power input | (1)(E) | kW | 57,3 | 64,7 | 73,9 | 85,1 | 91,0 | 96,2 | 106 | | EER | (1)(E) | | 4,00 | 4,03 | 4,01 | 4,11 | 4,14 | 4,37 | 4,46 | | SEER | (2)(E) | | 6,05 | 5,99 | 6,31 | 6,29 | 6,02 | 6,61 | 6,67 | | Water flow user side | (1) | I/h | 39448 | 44776 | 50946 | 60069 | 64702 | 72203 | 81499 | | Water pressure drop user side | (1)(E) | kPa | 41 | 42 | 41 | 44 | 44 | 25 | 31 | | Water flow source side | (1) | l/h | 48841 | 55392 | 63082 | 74035 | 79646 | 88222 | 99146 | | Water pressure drop source side | (1)(E) | kPa | 63 | 65 | 66 | 68 | 68 | 44 | 54 | | Heating capacity | (3)(E) | kW | 257 | 297 | 338 | 392 | 423 | 468 | 524 | | Total power input | (3)(E) | kW | 64,1 | 73,5 | 82,8 | 95,9 | 103 | 112 | 124 | | COP | (3)(E) | | 4,01 | 4,04 | 4,08 | 4,09 | 4,11 | 4,18 | 4,23 | | Heating energy efficiency class | (4) | | | | | A+++ | | | | | SCOP | (2)(E) | | 5,85 | 5,82 | 5,91 | 5,85 | 5,74 | 6,11 | 6,06 | | Water flow user side | (3) | l/h | 46051 | 53227 | 60587 | 70288 | 75962 | 83958 | 93908 | | Water pressure drop user side | (3)(E) | kPa | 56 | 61 | 61 | 62 | 63 | 41 | 49 | | Water flow source side | (3) | l/h | 58716 | 68084 | 77680 | 90152 | 97599 | 107671 | 121103 | | Water pressure drop source side | (3)(E) | kPa | 84 | 90 | 88 | 91 | 93 | 52 | 63 | | Maximum current absorption | | Α | 144 | 161 | 182 | 224 | 240 | 261 | 303 | | Start up current | | A | 360 | 377 | 447 | 492 | 508 | 529 | 571 | | Startup current with soft starter | | A | 244 | 259 | 305 | 340 | 353 | 369 | 403 | | Compressors / circuits | | | | | | 4/2 | | | | | Sound power level | (5) | dB(A) | 83 | 85 | 90 | 90 | 90 | 92 | 92 | | Sound power level, low-noise version | (5) | dB(A) | 77 | 79 | 84 | 86 | 86 | 87 | 88 | | Sound power level quiet version | (5) | dB(A) | 71 | 73 | 78 | 80 | 80 | 81 | 82 | | Weight without options | | kg | 1012 | 1121 | 1425 | 1523 | 1555 | 1959 | 2008 | Water temperature - user side 12°C/7°C, water temperature - dissipation side 30°C/35°C (EN14511:2022) η efficiency values for heating and cooling are respectively calculated by the
following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Water temperature - user side 40°C / 45°C, water temperature - source side 10°C / 7°C (EN14511:2022) Seasonal energy efficiency class for LOW TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A + + + DI the range $A+++\rightarrow D]$ Sound power level measured according to ISO 9614 EUROVENT certified data ### WLE H NOT REVERSIBLE HEAT PUMPS TECHNICAL DATA | WLE | | | 606 | 636 | 696 | 746 | |--------------------------------------|--------|---------|--------|--------|--------|--------| | Power supply | | V-ph-Hz | | 400/3 | 3N/50 | | | Cooling capacity | (1)(E) | kW | 543 | 597 | 650 | 700 | | Total power input | (1)(E) | kW | 129 | 141 | 151 | 167 | | EER | (1)(E) | | 4,20 | 4,24 | 4,29 | 4,19 | | SEER | (2)(E) | | 6,59 | 6,63 | 6,62 | 6,70 | | Water flow user side | (1) | I/h | 93295 | 102590 | 111672 | 120233 | | Water pressure drop user side | (1)(E) | kPa | 36 | 41 | 50 | 57 | | Water flow source side | (1) | l/h | 114637 | 125788 | 136556 | 147523 | | Water pressure drop source side | (1)(E) | kPa | 62 | 68 | 70 | 80 | | Heating capacity | (3)(E) | kW | 612 | 673 | 741 | 799 | | Total power input | (3)(E) | kW | 150 | 164 | 180 | 192 | | COP | (3)(E) | | 4,08 | 4,10 | 4,12 | 4,16 | | Heating energy efficiency class | (4) | | A+++ | | | | | SCOP | (2)(E) | | 6,15 | 6,03 | 6,01 | 6,19 | | Water flow user side | (3) | I/h | 109766 | 120603 | 132795 | 143252 | | Water pressure drop user side | (3)(E) | kPa | 57 | 63 | 67 | 76 | | Water flow source side | (3) | I/h | 140216 | 154510 | 170722 | 185132 | | Water pressure drop source side | (3)(E) | kPa | 76 | 86 | 107 | 124 | | Maximum current absorption | | A | 328 | 370 | 412 | 454 | | Start up current | | Α | 593 | 638 | 680 | 722 | | Startup current with soft starter | | A | 421 | 457 | 491 | 524 | | Compressors / circuits | | | 6/2 | | | | | Sound power level | (5) | dB(A) | 94 | 94 | 94 | 94 | | Sound power level, low-noise version | (5) | dB(A) | 88 | 89 | 89 | 90 | | Sound power level quiet version | (5) | dB(A) | 82 | 83 | 83 | 84 | | Weight without options | | kg | 2669 | 2775 | 2734 | 2838 | ⁽¹⁾ Water temperature - user side 12°C / 7°C, water temperature - dissipation side 30°C / 35°C (EN14511:2022) (2) nefficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. tine EN 14825:2022 regulation. (3) Water temperature - user side 40°C / 45°C, water temperature - source side 10°C / 7°C (EN14511:2022) (4) Seasonal energy efficiency class for LOW TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013]. The energy efficiency class of this product is included in the range A+++ → D] (5) Sound power level measured according to ISO 9614 (E) EUROVENT certified data | - 1 | FG | FN | n | WI | F | r | |-----|----|----|---|----|---|---| | LLULINI | D WLL C | | | | |---------|---|--|--|--| | 1 | Dissipation side - outlet (Victaulic 2") | | | | | 2 | Dissipation side - inlet Victaulic (Victaulic 2") | | | | | 3 | User side - inlet (Victaulic 2") | | | | | 4 | User side - outlet (Victaulic 2") | | | | | 5 | De-superheater water outlet 1" | | | | | 6 | Desuperheater water inlet 1" | | | | | 7 | Vibration dumpers | | | | | 8 | Lifting points | | | | | 9 | Power supply input | | | | | 10 | User interface | | | | | CHILLE | R FLOW SWITH POSITION: 2-3 | | | | | CLOSIN | CLOSING PANELLING AVAILABLE ON REQUEST | | | | | | | |--------|---| | 1 | Dissipation side - inlet Victaulic (Victaulic 2") | | 2 | Dissipation side - outlet (Victaulic 2") | | 3 | User side - inlet (Victaulic 2") | | 4 | User side - outlet (Victaulic 2") | | 5 | De-superheater water outlet 1" | | 6 | Desuperheater water inlet 1" | | 7 | Vibration dumpers | | 8 | Lifting points | | 9 | Power supply input | | 10 | User interface | | HEAT P | PUMP FLOW SWITH POSITION: 1-3 | | CLOSIN | NG PANELLING AVAILABLE ON REQUEST | | | | # DIMENSIONAL DRAWINGS | LEGENI | D WLE C | |--------|---| | 1 | Dissipation side - outlet (Victaulic 2") | | 2 | Dissipation side - inlet Victaulic (Victaulic 2") | | 3 | User side - inlet (Victaulic 2") | | 4 | User side - outlet (Victaulic 2") | | 5 | De-superheater water outlet 1" | | 6 | Desuperheater water inlet 1" | | 7 | Vibration dumpers | | 8 | Lifting points | | 9 | Power supply input | | 10 | User interface | | 11 | Outlet safety valve G. 3/4" F (only 152) | | CHILLE | R FLOW SWITH POSITION: 2-3 | | CLOSIN | G PANELLING AVAILABLE ON REQUEST | | LEGEN | D WLE H | |--------|---| | 1 | Dissipation side - inlet Victaulic (Victaulic 2") | | 2 | Dissipation side - outlet (Victaulic 2") | | 3 | User side - inlet (Victaulic 2") | | 4 | User side - outlet (Victaulic 2") | | 5 | De-superheater water outlet 1" | | 6 | Desuperheater water inlet 1" | | 7 | Vibration dumpers | | 8 | Lifting points | | 9 | Power supply input | | 10 | User interface | | 11 | Outlet safety valve G. 3/4" F (only 152) | | HEAT F | PUMP FLOW SWITH POSITION: 1-3 | | CLOSII | NG PANELLING AVAILABLE ON REQUEST | ### LEGEND WLE C | | Dissipation side - outlet (Victaulic 3") | | | |--------|--|--|--| | 2 | Dissipation side - inlet (Victaulic 3") | | | | 3 | User side - inlet (Victaulic 3") | | | | 4 | User side - outlet (Victaulic 3") | | | | 5 | De-superheater water outlet 2" | | | | 6 | Desuperheater water inlet 2" | | | | 7 | Vibration dumpers | | | | 8 | Lifting points | | | | 9 | Power supply input | | | | 10 | User interface | | | | 11 | Outlet safety valve G. 3/4" F | | | | CHILLE | R FLOW SWITH POSITION: 2-3 | | | | | CLOSING PANELLING AVAILABLE ON REQUEST | | | | CLOSII | NG PANELLING AVAILABLE ON REQUEST | |--------|--| | HEAT F | PUMP FLOW SWITH POSITION: 1-3 | | 11 | Outlet safety valve G. 3/4" F | | 10 | User interface | | 9 | Power supply input | | 8 | Lifting points | | 7 | Vibration dumpers | | 6 | Desuperheater water inlet 2" | | 5 | De-superheater water outlet 2" | | 4 | User side - outlet (Victaulic 3") | | 3 | User side - inlet (Victaulic 3") | | 2 | Dissipation side - outlet (Victaulic 3") | | 1 | Dissipation side - inlet (Victaulic 3") | ### **DIMENSIONAL DRAWINGS** | 1 | FG | FN | n | WI | F | r | |---|----|----|---|----|---|---| | LEGEN | D MTE C | |--------|--| | 1 | User side - inlet (Victaulic 3") | | 2 | User side - outlet (Victaulic 3") | | 3 | Dissipation side - outlet (Victaulic 3") | | 4 | Dissipation side - inlet (Victaulic 3") | | 5 | De-superheater water outlet 2" | | 6 | Desuperheater water inlet 2" | | 7 | Vibration dumpers | | 8 | Lifting points | | 9 | Power supply input | | 10 | User interface | | 11 | Outlet safety valve G. 1" F | | CHILLE | R FLOW SWITH POSITION: 1-4 | | CLOSIN | IG PANELLING AVAILABLE ON REQUEST | | | | | CLOSII | NG PANELLING AVAILABLE ON REQUEST | |--------|--| | HEAT I | PUMP FLOW SWITH POSITION: 1-3 | | 11 | Outlet safety valve G. 1" F | | 10 | User interface | | 9 | Power supply input | | 8 | Lifting points | | 7 | Vibration dumpers | | 6 | Desuperheater water inlet 2" | | 5 | De-superheater water outlet 2" | | 4 | Dissipation side - outlet (Victaulic 3") | | 3 | Dissipation side - inlet (Victaulic 3") | | 2 | User side - outlet (Victaulic 3") | | 1 | User side - inlet (Victaulic 3") | ### **DIMENSIONAL DRAWINGS** | 1 F | GFN | ו חו | WI | FC | |-----|-----|------|----|----| | LEGENL |) WLE C | |--------|--| | 1 | User side - inlet (Victaulic 5") | | 2 | User side - outlet (Victaulic 5") | | 3 | Dissipation side - outlet (Victaulic 5") | | 4 | Dissipation side - inlet (Victaulic 5") | | 5 | De-superheater water outlet 2" | | 6 | Desuperheater water inlet 2" | | 7 | Vibration dumpers | | 8 | Lifting points | | 9 | Power supply input | | 10 | User interface | | 11 | Outlet safety valve G. 1" 1/4 F | | CHILLE | R FLOW SWITH POSITION: 1-4 | | CLOSIN | G PANELLING AVAILABLE ON REQUEST | | | | | | - ·· ·· | | | | | | |--------|--|--|--|--|--|--| | 1 | User side - inlet (Victaulic 5") | | | | | | | 2 | User side - outlet (Victaulic 5") | | | | | | | 3 | Dissipation side - inlet (Victaulic 5") | | | | | | | 4 | Dissipation side - outlet (Victaulic 5") | | | | | | | 5 | De-superheater water outlet 2" | | | | | | | 6 | Desuperheater water inlet 2" | | | | | | | 7 | Vibration dumpers | | | | | | | 8 | Lifting points | | | | | | | 9 | Power supply input | | | | | | | 10 | User interface | | | | | | | 11 | Outlet safety valve G. 1" 1/4 F | | | | | | | HEAT F | HEAT PUMP FLOW SWITH POSITION: 1-3 | | | | | | | CLOSII | CLOSING PANELLING AVAILABLE ON REQUEST | | | | | | # MF - MULTI-PURPOSE Introductionp.348MLEp.350 **LEP** p.364 # Energy saving thanks to a total recovery Galletti multi-purpose heat pumps are total recovery units used for a simultaneous hot and cold water production. Available for a 2-pipe system, DHW production under request, or a 4-pipe system, designed for service and residential sectors. As well as winter heating and summer air conditioning, in case of a 2-pipe air-conditioning systems in which, thermal power for the DHW production is required, Galletti
multi-purpose systems are equipped with a plate heat exchanger used for the DHW production. Thanks to the advanced technology of these systems, they can satisfy this request in every season, also when there is no need of air-conditioning, but that's not all! They can do that efficiently by using the total recovery of condensation heat available during cooling phase. # Production of chilled water with total condensation heat recovery for DHW production S1: "user side" plate exchanger S2: "DHW production side" plate exchanger S3: Finned block heat exchanger # Partial load efficiency It is necessary to guarantee that the generation system provides high values of COP/EER even in partial load efficiency which, often, corresponds to the greatest number of working hours in a seasonal cycle. According to Galletti multi-purpose series, this purpose is achieved through a meticulous thermodynamic design of all main components. As for the multi-purpose heat pumps which have one cooling circuit, it is possible to modulate the thermal power released through the variation of frequency in the single compressor activated by a BLDC motor. When on-off compressors are used, high efficiency is guaranteed also for partial loads through different steps of operation due to compressors, divided in one or two thermodynamic circuits. # Additional total recovery heat pumps compared to traditional generation systems. - » High renewable energy availability can be obtained from the environment using different methods - » Respect for the environment through energy efficiency due to the excellent COP and EER values - » Reduction in the consumption of fossil energy (ideal for photovoltaic systems combinations) - » Risks of explosion, fire and indoor burning materials poisoning prevented - » Totally programmable with the possibility of remote management and on line assistance - » Low maintenance due to the absence of wearing parts - » Low-noise execution - » No CO₂ and local harmful emissions - » It does not pollute and it can be fueled by renewable energy sources - » Maximum savings on running costs combined with high environmental sustainability - » One unit substituting boilers and air-conditioning units # Total heat recovery multi-purpose units with low GWP refrigerants MLE # Outdoor packaged air-water unit # MLE 40 - 240 kW ### **PLUS** - » Refrigerant with GWP of less than 500 - » Total heat recovery - » High seasonal efficiency values - » Electronic expansion valve - » 2 cooling circuits - » Possibility to configure low-noise versions - » Production of hot water up to 55°C - » Full load operation up to -15°C outside air temperature # Air-water unit with total recovery heat and high seasonal efficiency and low GWP refrigerant MLE is the new range Galletti of air-cooled packaged multifunctional heat pumps with total heat recovery for outdoor installation featuring R454B refrigerant. R454B is a next generation A2L refrigerant with a GWP of only 467, one of the lowest on the market. This GWP value ensures that the MLE range complies with the gradual reduction of greenhouse gas emissions required by the F-GAS regulation. The range consists of 12 models with cooling capacities ranging from 40 to 240 kW, available for 2+2 pipe (M version) or 4 pipe (P version) systems. The main strong point of the range is the high seasonal efficiency, aimed at definitively reducing annual energy consumption, as well as offering the possibility of satisfying the thermal load, cooling and domestic hot water production of a building with a unique solution. In order to increase the efficiency at partial loads, all MLE models are equipped with dual-circuit solutions, using up to 4 scroll compressors with IDV (intermediate discharge valve) as standard, the units are equipped with an electronic expansion valve. The use of top quality components at the cutting edge of technology in the cooling, hydraulic, and electrical systems makes MLE units state of the art in terms of efficiency, reliability, and operating limits. In fact, the ability to produce water from 5°C to 55°C, and full load operation with external air from -15°C to 45°C. The range allows high configurability from an acoustic point of view, having a wide range of accessories designed to reduce noise emissions, and hydrauilc, with the possibility of integrating up to 4 pumps on board (2 user side and 2 recovery side) and an inertial buffer tank. The advanced control, always present in the whole range, allows a continuous monitoring of the operating parameters, advanced adjustment logics, and connectivity with the most common protocols. | CONFIGURATOR | | | | | | | | | | | | | | | | |---|------------|-------|---|---|---|---|---|---|---|---|---|----|----|----|----| | The models are completely configurable by selecting | Version | Field | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | the version and the options. To the right is shown an example of configuration. | MLE174PS2A | | A | 0 | 0 | 0 | E | E | 0 | 0 | 0 | 0 | 0 | 0 | 1 | To verify the compatibility of the options, use the selection software or the price list. ### **AVAILABLE VERSIONS** | 2 pipes systems version | | 4 pipes systems version | | |-------------------------|--|-------------------------|----------------------------| | MLEMS2A | Power supply 400 V-3N-50Hz + circuit breaker | MLEPS2A | Power supply 400V-3N-50Hz | | MLEMS5A | Power supply 400V-3-50Hz + circuit breaker | MLEPS5A | Power supply 400V-3-50Hz - | ### **CONFIGURATION OPTIONS** | i Expansion vaive | 1 | Expansion va | alve | |-------------------|---|--------------|------| |-------------------|---|--------------|------| Electronic ### 2 User side water pump 0 Absent - Single standard pump Double std pump OR - Single HP pump 3 - Double HP pump OR Single inverter standard pump - Standard double inverter pump (excludes inverter pump recovery side) В - Inverter Single HP pump - HP double inverter pump OR (excludes inverter pump recovery side) Water buffer tank D - 0 Absent - Selected recovery side - S Selected user side - Recovery water pump - 0 Absent - Single standard pump - Double std pump OR - Single HP pump - HP double pump OR - Single inverter standard pump Std single inverter pump OR (excludes inverter pump user side) Inverter Single HP pump - HP double inverter pump OR (excludes inverter pump user side) D - Air flow modulation - with EC Fans high pressure head (not available up to size 114) - With phase-cut (not available up to size 114) with EC Fans (supplied up to size 114) Antifreezing kit Hz + circuit breaker + circuit breaker - Ε Only plate exchanger (supplied user and recovery) - Plate exchanger and pump - For plate exchanger, pump, tank and expansion vassel. - Plate exchanger, tank and expansion vassel - 7 Acoustic insulation and attenuation - 0 Absent - Compressor compartment acoustic insulation and sound blanket Compressor soundproof insulations + Low-noise EC fans - Remote communication - В - RS485 connection port (Modbus protocol or Carel) BACNET IP/pCOWeb serial board BACNET IP / pCOWeb serial board + supervision software Remote control - Absent - Remote simplified control panel - Remote control panel for advanced controller Special coils / Protective treatments ### 10 - Copper aluminium (standard) Cataphoresis - Hydrophilic - Pre-painted fins with epoxy painting - Copper-copper - Anti vibration shock mounts 11 - Absent Made of rubber - М ### With spring Outdoor coil trace heater and unit base 12 - Absent - Selected - Onboard controller 13 Advanced | ACC | ESSORIES | | | |-----|---|-----|--| | Α | Outdoor finned coil heat exchanger protection filters | м | 0-10V signal for external user and recovery pumps control (only if field $2 = 0$ and field | | В | Outdoor finned coil heat exchanger protection grille | IVI | 4 = 0) | | C | Two pairs of Victaulic joints (from size 104) | N | Compressor isolation valves | | D | ON/OFF status of the compressors | 0 | Night-time low-noise | | E | Remote control for step capacity limit (advanced controller required) | Q | Couple of probes for buffer tank temperature regulation (user and recovery) | | F | Configurable digital alarm board (advanced controller required) | R | Enabling 2nd set-point / external alarm signaling via digital input | | G | Soft starter | S | Hot-wire electronic flow switch | | Н | Power factor capacitors | T | Energy metering kit | | I | Refrigerant sensors (standard) | U | Unit lifting pipes (up to size 94) | | L | Refrigerant filter regulating kit | V | Set-point modification with 4-20mA signal | # Total heat recovery multi-purpose units with low GWP refrigerants MLE ### **Very low GWP refrigerant** Use of R454B refrigerant with low environmental impact. R454B is a next-generation A2L refrigerant with a GWP of only 467, one of the lowest on the market. This GWP value ensures that the MLE range complies with the gradual reduction of quotas of greenhouse refrigerants in the European market required by the F-GAS regulation. ### **Electronic valve** It is standard on the entire range and offers greater responsiveness during transients. The electronics also manage the synergistic operation of the compressors and the valve, thereby making it possible to vary overheating and maximize efficiency at partial loads. ### **Scroll compressors** The scroll-type compressors designed to work with R454B, which can be sound insulated, include internal thermal protection of the windings and are installed on special anti-vibration supports. The scroll-type compressors are equipped with an IDV valve. The IDV intermediate delivery valve technology allows the compressor to avoid losses caused by overcompression and, consequently, the
additional work the motor has to perform in partial-load operation, thus saving energy and improving seasonal and partial-load efficiency from 3% to 10%. ### Safety procedures in case of refrigerant leakage As a standard feature, the units are equipped with leak detection sensors near the cooling circuit. The microprocessor manages the procedures for securing and shutting down the unit in case of refrigerant leakage, also making it possible to divert the power supply of the control unit that collects the information from the leak sensors on a low-voltage emergency line. This function allows the complete disconnection of the power to the unit during maintenance operations, while leaving all the safety systems enabled. ### **Economy - low noise function** Based on time slots or no-voltage contact, this function makes it possible to reduce the maximum speed of fans and the number of compressors that can be activated. This operation is especially useful during the night phase, when the power required is very low, and the unit can operate at a reduced level, thus lowering the noise level during a sensitive time period. ### Low noise execution The units can be supplied in a low-noise version, with noise-canceling headsets for compressors, and additional acoustic insulation to the fridge compartment. This configuration, combined with the night attenuation function, provides a large reduction in the sound power level. ### Primary heat pump management In case of a decoupled circuit, it is possible, via remote sensor, to switch off the primary circuit's pumps, when permitted, due to low thermal load. In this manner a further reduction in pumping costs is achieved. ### Power analyzer Integrated inside the electrical panel, it includes current transformers and control unit. It allows the continuous monitoring of consumption and the main electrical quantities, then made available for any BMS system via serial port, as well as the limitation of the power absorbed when this exceeds a threshold value set by the user. ### **AVAILABLE VERSIONS** ### MLE M - 2-pipe systems Operating modes available for an MLE M unit which interfaces with a 2-pipe system. C1 Hydraulic circuit manages winter heating and summer air-conditioning while the C2 one is used for the production of DHW, ensuring this function 365 days per year. In case of simultaneous production of cold (C1) and high-temperature water for domestic use (C2), the machine is able to recover all the condensation heat on the refrigerant for the production of DHW. ### MLE P - 4-pipe systems Operating modes available for an MLE P unit which interfaces with a 4-pipe air conditioning system. In this kind of systems, it is possible to request air-conditioning and heating at the same time. For this reason, C1 and C2 hydraulic circuits respectively produce cold and hot water. In case of simultaneous operation of C1 and C2 hydraulic circuits, the condensation heat of the cooling system is totally recovered for the production of hot water. # Total heat recovery multi-purpose units with low GWP refrigerants MLE ### Operating modes of the MLE M version # a a ### Cooling In the "Standard Chiller" mode the MLE multifunctional unit chills water to cool a room on the user side, dissipating the condensation heat in air by means of a finned block condenser. ### Heating In the "Heat Pump" mode the MLE unit heats the water in the condenser to provide heating on the user side, absorbing the evaporative cooling capacity in air by means of a finned block heat exchanger. ### Hot water production (for sanitary use-DHW) In the "Heat Pump for hot production recovery side" mode the MLE M multipurpose unit heats the water in the recoverer, absorbing the evaporative cooling capacity in air by means of a finned block heat exchanger. The unit MLE P in the "Heat Pump for hot production recovery side" mode heats water via the brazed plate exchanger for total heat recovery, serving the hot user side. ### Cooling and hot water production through total recovery In the "Chiller + DHW" mode the MLE P multifunctional unit can produce chilled water with the simultaneous production of high-temperature hot water for sanitary use, thanks to total heat recovery. # Hot water production (for example for sanitary use) simultaneously with heating The unit MLE M in the "Heat Pump for hot production user and recovery side" mode heats water in parallel, optimally exploiting the complete independence of its thermodynamic circuits, allowing simultaneous water heating serving user site and for DHW. Capacity is equally divided between the two circuits. ### The solution to the problem of defrosting During the wintertime period, especially with temperatures ranging between -3 °C and +3 °C, the high ambient relative humidity causes the formation of water condensation around the exchanger fins. Since the exchanger is at a lower temperature than the outdoor air, the water in contact with it ends up hindering the heat exchange necessary for the system to work correctly. A defrost cycle is a temporary reversal of the thermodynamic cycle which switches the unit into the summer mode and melts the ice present between fins. This phase is obviously problematic, since the cooling cycle warms up the exchanger by drawing heat from the room that was previously being heated. The circuit that is defrosting will draw heat on the user side (that is, not on the DHW side) if the unit is MLE M, and will heat on the hot water user side if the unit is MLE P. ### Separate defrosting The MLE unit reduces this problem with the following technical innovations: - The two thermodynamic circuits in the MLE P M and MLE P P are completely independent and while one defrosts, the other circuit is able to ensure continuity in the unit's operation, with practically no thermal discomfort for the user. - The software which manages the defrost cycle minimizes the time it takes to complete it and only acts when it is really necessary. The fans are pushed to their maximum capacity at just the right time, that is, when the ice is no longer stuck to the fins, and mechanically ejects it from the heat exchanger. # RATED TECHNICAL DATA MLE P | MLE | | | 41 | 51 | 61 | 84 | 94 | 104 | |---|--------|-----------------|------|-------|-------|-------|-------|-------| | Power supply | | V-ph-Hz | | | 400- | 3N-50 | | | | Cooling mode operation | | | | | | | | | | Cooling capacity | (1)(E) | kW | 40,0 | 50,9 | 57,9 | 80,0 | 88,9 | 101 | | Total power input | (1)(E) | kW | 14,0 | 18,6 | 20,8 | 28,5 | 33,6 | 37,3 | | EER | (1)(E) | | 2,85 | 2,74 | 2,78 | 2,80 | 2,65 | 2,71 | | Water flow | (1) | I/h | 6879 | 8754 | 9959 | 13760 | 15311 | 17382 | | Water pressure drop | (1)(E) | kPa | 16 | 25 | 31 | 32 | 39 | 31 | | Available pressure head - LP pumps | (1) | kPa | 170 | 152 | 140 | 124 | 103 | 120 | | Available pressure head - HP pumps | (1) | kPa | 204 | 187 | 176 | 192 | 179 | 178 | | Cooling and heating mode in total heat recovery | | | | | | | | | | Cooling capacity | (2)(E) | kW | 38,9 | 51,5 | 58,3 | 75,3 | 88,5 | 101 | | Heating capacity | (2)(E) | kW | 52,4 | 69,2 | 78,9 | 103 | 121 | 137 | | Total power input | (2)(E) | kW | 12,4 | 16,2 | 18,6 | 25,5 | 29,4 | 32,7 | | TER | (2)(E) | | 7,35 | 7,45 | 7,36 | 7,00 | 7,12 | 7,28 | | Available pressure head LP pumps user side | | kPa | 170 | 154 | 143 | 117 | 103 | 121 | | Available pressure head HP pumps user side | | kPa | 205 | 189 | 178 | 188 | 179 | 180 | | Available pressure head LP pump total recovery side | | kPa | 166 | 147 | 132 | 112 | 89 | 105 | | Available pressure head HP pump total recovery side | | kPa | 201 | 182 | 167 | 185 | 170 | 163 | | Heating mode operation | | | | | | | - | | | Heating capacity | (3)(E) | kW | 45,2 | 58,1 | 67,7 | 89,4 | 103 | 119 | | Total power input | (3)(E) | kW | 13,9 | 17,4 | 19,9 | 27,6 | 31,3 | 35,2 | | COP | (3)(E) | | 3,26 | 3,33 | 3,41 | 3,24 | 3,28 | 3,39 | | SCOP | (4) | | 3,54 | 3,61 | 3,62 | 3,70 | 3,75 | 3,75 | | Water flow | (3) | I/h | 7842 | 10083 | 11743 | 15493 | 17788 | 20674 | | Water pressure drop | (3)(E) | kPa | 18 | 29 | 38 | 36 | 46 | 43 | | Available pressure head - LP pumps | (3) | kPa | 164 | 142 | 128 | 109 | 82 | 104 | | Available pressure head - HP pumps | (3) | kPa | 198 | 177 | 163 | 183 | 166 | 162 | | General data | | | | | | | | | | Maximum current absorption | | Α | 40,0 | 50,0 | 54,0 | 74,0 | 86,0 | 98,0 | | Start up current | | A | 98 | 142 | 147 | 98 | 142 | 142 | | Startup current with soft starter | | A | 69 | 99 | 103 | 69 | 99 | 99 | | Compressors / circuits | | | 2/2 | 2/2 | 2/2 | 4/2 | 4/2 | 4/2 | | Expansion vessel volume | | dm ³ | 8 | 8 | 8 | 8 | 8 | 12 | | Buffer tank volume | | dm ³ | 125 | 125 | 125 | 200 | 200 | 315 | | Sound power level | (5)(E) | dB(A) | 83 | 83 | 83 | 84 | 85 | 86 | | Weight without options | | kg | 690 | 705 | 715 | 960 | 985 | 1350 | | Maximum transport weight | | kg | 782 | 798 | 809 | 1092 | 1121 | 1458 | Outdoor air temperature 35°C, water temperature 12°C/7°C (EN14511:2022) Cooling water temperature 7°C, water flow rate same as in cooling mode; Recovery water temperature 45°C, water flow rate same as in heating mode Outdoor air temperature dry bulb 7°C/ wet bulb 6°C, water temperature 40°C / 45°C (EN14511:2022) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Low temperature conditions. ⁽⁵⁾ Sound power level measured according to ISO 9614(E) EUROVENT certified data # Total heat recovery multi-purpose units with low GWP refrigerants MLE ### RATED TECHNICAL DATA MLE P | MLE | | | 114 | 144 | 154 | 174 | 204 | 244 | |---|--------|---------
-------|-------|-------|-------|-------|-------| | Power supply | | V-ph-Hz | | | 400- | 3N-50 | | | | Cooling mode operation | | | | | | | | | | Cooling capacity | (1)(E) | kW | 119 | 137 | 150 | 170 | 200 | 234 | | Total power input | (1)(E) | kW | 42,7 | 48,4 | 55,0 | 65,4 | 75,8 | 92,0 | | EER | (1)(E) | | 2,79 | 2,83 | 2,73 | 2,60 | 2,64 | 2,54 | | Water flow | (1) | I/h | 20491 | 23570 | 25823 | 29266 | 34424 | 40218 | | Water pressure drop | (1)(E) | kPa | 41 | 28 | 33 | 41 | 31 | 41 | | Available pressure head - LP pumps | (1) | kPa | 107 | 184 | 168 | 141 | 148 | 113 | | Available pressure head - HP pumps | (1) | kPa | 166 | 307 | 290 | 263 | 197 | 163 | | Cooling and heating mode in total heat recovery | | | | | | | | | | Cooling capacity | (2)(E) | kW | 115 | 134 | 150 | 174 | 202 | 244 | | Heating capacity | (2)(E) | kW | 156 | 180 | 201 | 234 | 271 | 326 | | Total power input | (2)(E) | kW | 37,6 | 41,9 | 46,5 | 55,4 | 63,0 | 76,4 | | TER | (2)(E) | | 7,21 | 7,51 | 7,53 | 7,37 | 7,51 | 7,45 | | Available pressure head LP pumps user side | | kPa | 102 | 183 | 168 | 142 | 153 | 123 | | Available pressure head HP pumps user side | | kPa | 161 | 306 | 290 | 265 | 202 | 173 | | Available pressure head LP pump total recovery side | | kPa | 91 | 170 | 153 | 121 | 142 | 103 | | Available pressure head HP pump total recovery side | | kPa | 149 | 292 | 274 | 242 | 191 | 153 | | Heating mode operation | | | | | | ! | | , | | Heating capacity | (3)(E) | kW | 134 | 154 | 168 | 193 | 225 | 268 | | Total power input | (3)(E) | kW | 39,8 | 47,3 | 52,1 | 60,8 | 71,9 | 84,2 | | COP | (3)(E) | | 3,36 | 3,26 | 3,22 | 3,17 | 3,13 | 3,18 | | SCOP | (4) | | 3,80 | 3,70 | 3,71 | 3,70 | 3,60 | 3,65 | | Water flow | (3) | l/h | 23166 | 26732 | 29153 | 33439 | 39120 | 46430 | | Water pressure drop | (3)(E) | kPa | 53 | 36 | 42 | 54 | 35 | 48 | | Available pressure head - LP pumps | (3) | kPa | 87 | 163 | 142 | 105 | 129 | 84 | | Available pressure head - HP pumps | (3) | kPa | 145 | 285 | 263 | 227 | 178 | 134 | | General data | | | | | | | | | | Maximum current absorption | | Α | 106 | 115 | 127 | 145 | 165 | 193 | | Start up current | | Α | 147 | 158 | 197 | 215 | 215 | 260 | | Startup current with soft starter | | A | 103 | 111 | 138 | 150 | 150 | 182 | | Compressors / circuits | | | | | 4 | /2 | | | | Expansion vessel volume | | dm³ | 12 | 24 | 24 | 24 | 24 | 24 | | Buffer tank volume | | dm³ | 315 | 600 | 600 | 600 | 600 | 600 | | Sound power level | (5)(E) | dB(A) | 86 | 85 | 85 | 87 | 89 | 89 | | Weight without options | | kg | 1355 | 1795 | 1810 | 1895 | 2320 | 2320 | | Maximum transport weight | | kg | 1464 | 1988 | 2000 | 2090 | 2560 | 2562 | ⁽¹⁾ Outdoor air temperature 35°C, water temperature 12°C/7°C (EN14511:2022) (2) Cooling water temperature 7°C, water flow rate same as in cooling mode; Recovery water temperature 45°C, water flow rate same as in heating mode (3) Outdoor air temperature dry bulb 7°C/ wet bulb 6°C, water temperature 45°C (EN14511:2022) (4) n efficiency values for heating and cooling are respectively calculated by the following formulas: [n = SCOP / 2,5 - F(1) - F(2)] e [n = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Low temperature conditions. (5) Sound power level measured according to ISO 9614 (E) EUROVENT certified data # RATED TECHNICAL DATA MLE M | MLE | | | 41 | 51 | 61 | 84 | 94 | 104 | | |---|--------|-----------------|-----------|------|-------|-------|-------|-------|--| | Power supply | | V-ph-Hz | 400-3N-50 | | | | | | | | Cooling mode operation | | | | | | | | | | | Cooling capacity | (1)(E) | kW | 40,0 | 50,9 | 57,9 | 80,0 | 88,9 | 101 | | | Total power input | (1)(E) | kW | 14,0 | 18,6 | 20,8 | 28,5 | 33,6 | 37,3 | | | EER | (1)(E) | | 2,85 | 2,74 | 2,78 | 2,80 | 2,65 | 2,71 | | | Water flow | (1) | I/h | 6879 | 8754 | 9959 | 13760 | 15311 | 17382 | | | Water pressure drop | (1)(E) | kPa | 16 | 25 | 31 | 32 | 39 | 31 | | | Available pressure head - LP pumps | (1) | kPa | 170 | 152 | 140 | 124 | 103 | 120 | | | Available pressure head - HP pumps | (1) | kPa | 204 | 187 | 176 | 192 | 179 | 178 | | | Cooling and heating mode in total heat recovery | | | | | | | | | | | Cooling capacity | (2)(E) | kW | 38,9 | 51,5 | 58,3 | 75,3 | 88,5 | 101 | | | Heating capacity | (2)(E) | kW | 52,4 | 69,2 | 78,9 | 103 | 121 | 137 | | | Total power input | (2)(E) | kW | 12,4 | 16,2 | 18,6 | 25,5 | 29,4 | 32,7 | | | TER | (2)(E) | | 7,35 | 7,45 | 7,36 | 7,00 | 7,12 | 7,28 | | | Available pressure head LP pumps user side | | kPa | 170 | 154 | 143 | 117 | 103 | 121 | | | Available pressure head HP pumps user side | | kPa | 205 | 189 | 178 | 188 | 179 | 180 | | | Available pressure head LP pump total recovery side | | kPa | 166 | 147 | 132 | 112 | 89 | 105 | | | Available pressure head HP pump total recovery side | | kPa | 201 | 182 | 167 | 185 | 170 | 163 | | | Heating mode operation | | | | | | | | | | | Heating capacity | (3)(E) | kW | 44,1 | 56,8 | 66,2 | 87,3 | 100 | 116 | | | Total power input | (3)(E) | kW | 14,8 | 18,5 | 21,1 | 29,4 | 33,3 | 37,4 | | | COP | (3)(E) | | 2,98 | 3,07 | 3,14 | 2,97 | 3,01 | 3,11 | | | SCOP | (4) | | 3,54 | 3,61 | 3,62 | 3,70 | 3,75 | 3,75 | | | Water flow | (3) | l/h | 7658 | 9853 | 11471 | 15140 | 17345 | 20177 | | | Water pressure drop | (3)(E) | kPa | 18 | 28 | 36 | 35 | 44 | 41 | | | Available pressure head - LP pumps | (3) | kPa | 166 | 144 | 131 | 112 | 88 | 107 | | | Available pressure head - HP pumps | (3) | kPa | 200 | 179 | 166 | 185 | 169 | 165 | | | General data | | | | | | | | | | | Maximum current absorption | | Α | 40,0 | 50,0 | 54,0 | 74,0 | 86,0 | 98,0 | | | Start up current | | A | 98 | 142 | 147 | 98 | 142 | 142 | | | Startup current with soft starter | | A | 69 | 99 | 103 | 69 | 99 | 99 | | | Compressors / circuits | | | 2/2 | 2/2 | 2/2 | 4/2 | 4/2 | 4/2 | | | Expansion vessel volume | | dm ³ | 8 | 8 | 8 | 8 | 8 | 12 | | | Buffer tank volume | | dm ³ | 125 | 125 | 125 | 200 | 200 | 315 | | | Sound power level | (5)(E) | dB(A) | 83 | 83 | 83 | 84 | 85 | 86 | | | Weight without options | | kg | 690 | 705 | 715 | 960 | 985 | 1350 | | | Maximum transport weight | | kg | 782 | 798 | 809 | 1092 | 1121 | 1458 | | Outdoor air temperature 35°C, water temperature 12°C/7°C (EN14511:2022) Cooling water temperature 7°C, water flow rate same as in cooling mode; Recovery water temperature 45°C, water flow rate same as in heating mode Outdoor air temperature dry bulb 7°C/ wet bulb 6°C, water temperature 40°C / 45°C (EN14511:2022) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Low temperature conditions. ⁽⁵⁾ Sound power level measured according to ISO 9614(E) EUROVENT certified data # Total heat recovery multi-purpose units with low GWP refrigerants MLE ### RATED TECHNICAL DATA MLE M | MLE | | | 114 | 144 | 154 | 174 | 204 | 244 | | | |---|--------|---------|-----------|-------|-------|-------|-------|-------|--|--| | Power supply | | V-ph-Hz | 400-3N-50 | | | | | | | | | Cooling mode operation | | | | | | | | | | | | Cooling capacity | (1)(E) | kW | 119 | 137 | 150 | 170 | 200 | 234 | | | | Total power input | (1)(E) | kW | 42,7 | 48,4 | 55,0 | 65,4 | 75,8 | 92,0 | | | | EER | (1)(E) | | 2,79 | 2,83 | 2,73 | 2,60 | 2,64 | 2,54 | | | | Water flow | (1) | I/h | 20491 | 23570 | 25823 | 29266 | 34424 | 40218 | | | | Water pressure drop | (1)(E) | kPa | 41 | 28 | 33 | 41 | 31 | 41 | | | | Available pressure head - LP pumps | (1) | kPa | 107 | 184 | 168 | 141 | 148 | 113 | | | | Available pressure head - HP pumps | (1) | kPa | 166 | 307 | 290 | 263 | 197 | 163 | | | | Cooling and heating mode in total heat recovery | | | | | | | | | | | | Cooling capacity | (2)(E) | kW | 115 | 134 | 150 | 174 | 202 | 244 | | | | Heating capacity | (2)(E) | kW | 156 | 180 | 201 | 234 | 271 | 326 | | | | Total power input | (2)(E) | kW | 37,6 | 41,9 | 46,5 | 55,4 | 63,0 | 76,4 | | | | TER | (2)(E) | | 7,21 | 7,51 | 7,53 | 7,37 | 7,51 | 7,45 | | | | Available pressure head LP pumps user side | | kPa | 102 | 183 | 168 | 142 | 153 | 123 | | | | Available pressure head HP pumps user side | | kPa | 161 | 306 | 290 | 265 | 202 | 173 | | | | Available pressure head LP pump total recovery side | | kPa | 91 | 170 | 153 | 121 | 142 | 103 | | | | Available pressure head HP pump total recovery side | | kPa | 149 | 292 | 274 | 242 | 191 | 153 | | | | Heating mode operation | | | | | | | | | | | | Heating capacity | (3)(E) | kW | 130 | 150 | 164 | 189 | 221 | 262 | | | | Total power input | (3)(E) | kW | 42,4 | 50,2 | 55,4 | 64,7 | 76,5 | 89,8 | | | | COP | (3)(E) | | 3,08 | 2,99 | 2,96 | 2,91 | 2,89 | 2,92 | | | | SCOP | (4) | | 3,80 | 3,70 | 3,71 | 3,70 | 3,60 | 3,65 | | | | Water flow | (3) | l/h | 22603 | 26052 | 28405 | 32719 | 38351 | 45543 | | | | Water pressure drop | (3)(E) | kPa | 50 | 34 | 40 | 52 | 34 | 47 | | | | Available pressure head - LP pumps | (3) | kPa | 91 | 168 | 147 | 112 | 133 | 90 | | | | Available pressure head - HP pumps | (3) | kPa | 149 | 289 | 268 | 233 | 182 | 139 | | | | General data | | | | | | | | | | | | Maximum current absorption | | A | 106 | 115 | 127 | 145 | 165 | 193 | | | | Start up current | | A | 147 | 158 | 197 | 215 | 215 | 260 | | | | Startup current with soft starter | | Α | 103 | 111 | 138 | 150 | 150 | 182 | | | | Compressors / circuits | | | 4/2 | | | | | | | | | Expansion vessel volume | | dm³ | 12 | 24 | 24 | 24 | 24 | 24 | | | | Buffer tank volume | | dm³ | 315 | 600 | 600 | 600 | 600 | 600 | | | | Sound power level | (5)(E) |
dB(A) | 86 | 85 | 85 | 87 | 89 | 89 | | | | Weight without options | | kg | 1355 | 1795 | 1810 | 1895 | 2320 | 2320 | | | | Maximum transport weight | | kg | 1464 | 1988 | 2000 | 2090 | 2560 | 2562 | | | ⁽¹⁾ Outdoor air temperature 35°C, water temperature 12°C/7°C (EN14511:2022) (2) Cooling water temperature 7°C, water flow rate same as in cooling mode; Recovery water temperature 45°C, water flow rate same as in heating mode (3) Outdoor air temperature dry bulb 7°C/ wet bulb 6°C, water temperature 40°C/45°C (EN14511:2022) (4) n efficiency values for heating and cooling are respectively calculated by the following formulas: [n = SCOP / 2,5 - F(1) - F(2)] e [n = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Low temperature conditions. (5) Sound power level measured according to ISO 9614 (E) EUROVENT certified data 8 9 Lifting points User interface Power supply input ## Total heat recovery multi-purpose units with low GWP refrigerants MLE | LEGEND | | |--------|---| | 1 | Water inlet on user side 2" 1/2 F | | 2 | Water outlet user 2" 1/2 F | | 3 | Heat recovery hot water inlet 2" 1/2 F | | 4 | Recovery hot water outlet recovery 2" 1/2 F | | 5 | Water drainage tank 1/2" F | | 6 | Vibration dumpers | | 7 | Lifting points | | 8 | Power supply input | | 9 | User interface | | LEGEND | | |--------|--| | 1 | Water inlet on user side 2 1/2" VIC | | 2 | Water outlet user 2 1/2" VIC | | 3 | Heat recovery hot water inlet 2 1/2" VIC | | 4 | Recovery hot water outlet recovery 2 1/2"VIC | | 5 | Water drainage tank 1/2 " F | | 6 | Lifting points | | 7 | Vibration dumpers | | 8 | Power supply input | | 9 | User interface | ## Total heat recovery multi-purpose units with low GWP refrigerants MLE | ı | F | 61 | FN | 11 | ١ | |---|---|----|----|----|---| | _ | E | Ш | | | , | | 1 | Water inlet on user side 3" VIC | |---|---| | 2 | Water outlet user 3" VIC | | 3 | Heat recovery hot water inlet 3" VIC | | 4 | Recovery hot water outlet recovery 3" VIC | | 5 | Water drainage tank 1/2 " F | | 6 | Vibration dumpers | | 7 | Lifting points | | 8 | Power supply input | | 9 | User interface | | | | ### Indoor packaged water-water unit ### **LEP 50 - 470 kW** compressor Heating/ Total heat recovery pose unit Multi-purpose 2 pipes ### Maximum efficiency with total recovery and dissipation in water. LEP units are actually multi-purpose, they totally recover the condensation heat and they are characterized by the simultaneous production of cold and hot water. Available for two-pipe systems with the request of DHW production or in four-pipe systems, they are conceived for average-high power applications (multi residential or commercial unit) and they guarantee a high thermodynamic efficiency and a wide configurability both in terms of accessories and in terms of refrigeration cycle. LEP series is characterized by a reduced size, high thermodynamic cycle COP, no external noise, reduced cooling load and it is composed of 24 models with refrigeration capacity ranging from 50 to 470 kW both for the standard version and the silenced one. Multi-purpose LEP machines have six water connections linked to three different hydraulic circuits of which a dissipation one (hot or cold) opposed to the consumption. The users differ as for two-pipe system in which there is a hot/cold circuit and just one hot circuit for the production of DHW while in four-pipe systems there is one hot circuit and a cold one. There is the option to obtain an external sound-proof hydraulic module with circulation pumps for dissipation circuits, users and domestic hot water. ### **PLUS** - » Maximum energy efficiency - » Total condensation heat recovery - » Electronic expansion valve - » Up to 4 compressors - » Remote connectivity with the most common protocols - » Compact dimensions - » Low-noise level thanks to the paneled structure LEP is suitable to the air-conditioning of 2-pipe systems with production of DHW or in 4-pipe systems. In both, the total recovery of the heat ensures remarkable energy savings. #### MAIN COMPONENTS #### LEP-M: chiller mode In the "Chiller" mode the unit cools water to air condition the interior on the user side, dissipating the condensation heat by means of water that is cooled in the dissipation exchanger. #### LEP-M: chiller + DHW In the "Chiller + DHW" mode the unit can produce chilled water with the simultaneous production of high-temperature hot water for sanitary use, thanks to total heat recovery. #### LEP-M: DHW mode In the "high-temperature sanitary hot water (DHW)" mode the unit heats water in the condenser, dedicated to DHW as needed, dissipating the evaporative cooling capacity by means of water that is heated in the exchanger on the dissipation side. #### LEP-M: heating pump mode In the "heat pump" mode the unit heats the water in the condenser to warm the interior on the user side, dissipating the evaporative cooling capacity by means of water that is heated in the dissipation exchanger. #### LEP-P: 4-pipes systems The four-pipe system has a distribution system that offers both hot water (with respective return lines) and chilled water (with respective return lines). The LEP-P unit has a circuit used for the production of hot water and another one used for the production of cold water. | CONFIGURATOR | | | | | | | | | | | | |---|----------|-------|---|---|---|---|---|---|---|---|---| | The models are completely configurable by selecting the version and the | Version | Field | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | options. To the right is shown an example of configuration. | LEP214ML | | 2 | В | P | 0 | 2 | G | 0 | 0 | В | | | | | | | | | | | | | | To verify the compatibility of the options, use the selection software or the price list. #### **AVAILABLE VERSIONS** 2 pipes systems version LEP..MS Standa Standard execution LEP..ML Low noise execution 4 pipes systems version LEP..PS Standa Standard execution LEP..PL Low noise execution #### **CONFIGURATION OPTIONS** - **Power supply** n - 400 V 3 N 50 Hz 400 V 3 N 50 Hz 400 V 3 N 50 Hz + magnetic breakers - Onboard controller and expansion valve Advanced + electronic expansion valve 2 - 3 Source water flow modulation - Absent - 0-10V signal for condensation control - 4 User water flow modulation - Absent - 0-10V signal for water flow adjustment with $\Delta T = \text{const}$ (advanced controller required) - 0-10V signal for water flow adjustment with T = const (advanced controller required) - 5 - RS485 serial board (Carel / Modbus protocol) BACNET IP / PCOWEB serial board + supervision software Gweb (advanced controller required) - BACNET IP / PCOWEB serial board + clock board + supervision software Gweb (advanced controller required) - Anti vibration shock mounts - 0 Absent - Rubber anti vibration shock mounts - Spring anti vibration shock mounts - Packing - 0 Standard - Wooden cage Wooden crate - Remote control - Absent - Remote user panel for advanced controller - Insulated hydraulic module - Absent - Water pumps LP user + LP inverter source + LP recovery Water pumps LP user + LP source + LP recovery - Water pumps LP user + HP source + LP recovery - Water pumps LP user + HP inverter source + LP recovery - Water pumps HP user + LP source + LP recovery - Water pumps HP user + LP inverter source + LP recovery - Water pumps LP user + LP source + LP recovery Water pumps HP user + HP inverter source + LP recovery Water pumps LP user + LP inverter source + HP recovery - Water pumps LP user + LP source + HP recovery - Water pumps LP user + HP source + HP recovery - Water pumps LP user + HP inverter source + HP recovery - Water pumps HP user + HP source + HP recovery - Water pumps HP user + LP inverter source + HP recovery - Water pumps HP user + HP source + HP recovery - Water pumps HP user + HP inverter source + HP recovery | ACC | ESSORIES | | | |-----|--|---|---| | Α | Power factor capacitors | F | Refrigerant pressure gauges | | В | Soft starter | G | Three couples of Victaulic joints | | C | Service kit (advanced controller required) | Н | Filter isolation valves kit (solenoid valve and isolation valve) | | D | ON/OFF status of the compressors | I | 4-way valve for water flow inversion on user side in the hydraulic module | | E | Set point compensation outdoor temperature probe | L | Couple of probes for buffer tank temperature regulation | | LEP M | | | 042 | 052 | 062 | 072 | 082 | 092 | |--|---------|---------|-------|-------|---------|---------|-------|-------| | Power supply | | V-ph-Hz | | | 400 - 3 | 3N - 50 | | | | Cooling mode operation | | | | | | | | | | Cooling capacity | (1)(E) | kW | 46,4 | 53,4 | 63,6 | 69,4 | 80,6 | 93,1 | | Total power input | (1)(E) | kW | 10,5 | 12,5 | 14,2 | 15,8 | 17,8 | 21,4 | | EER | (1)(E) | | 4,41 | 4,27 | 4,47 | 4,39 | 4,52 | 4,35 | | SEER | (2) | | 5,61 | 5,52 | 5,87 | 5,81 | 6,17 | 6,12 | | Water flow user side | (1) | l/h | 7981 | 9187 | 10939 | 11939 | 13861 | 16015 | | Water pressure drop user side | (1)(E) | kPa | 19 | 25 | 21 | 25 | 19 | 25 | | Water flow source side | (1) | l/h | 9731 | 11254 | 13303 | 14553 | 16833 | 19555 | | Water pressure drop source side | (1)(E) | kPa | 27 | 36 | 30 | 35 | 27 | 36 | | Cooling mode operation and DWH in total re | ecovery | | | | | | , | | | Cooling capacity | (3)(E) | kW | 41,5 | 46,7 | 57,0 | 61,8 | 71,9 | 83,4 | | Heating capacity | (4)(E) | kW | 54,4 | 63,7 | 74,5 | 81,3 | 93,8 | 109 | | Total power input | (5)(E) | kW | 12,6 | 15,0 | 17,0 | 18,9 | 21,3 | 25,2 | | COP HRE | (5)(E) | | 7,60 | 7,34 | 7,74 |
7,56 | 7,80 | 7,66 | | Water flow user side | (3) | l/h | 7981 | 9187 | 10939 | 11939 | 13861 | 16015 | | Water pressure drop user side | (4) | kPa | 19 | 25 | 21 | 25 | 19 | 25 | | Water flow DHW side | (3) | l/h | 9194 | 11061 | 12610 | 13717 | 15840 | 18435 | | Water pressure drop DHW side | (4) | kPa | 25 | 34 | 27 | 32 | 24 | 32 | | Heating or DHW operation | ` | | | ` | | | | , | | DHW heating capacity | (6)(E) | kW | 53,0 | 63,8 | 72,7 | 79,1 | 91,3 | 106 | | Total power input | (6)(E) | kW | 12,4 | 15,4 | 16,6 | 18,5 | 20,8 | 24,6 | | COP | (6)(E) | | 4,29 | 4,14 | 4,37 | 4,27 | 4,40 | 4,32 | | SCOP | (7) | | 4,16 | 4,30 | 4,38 | 4,31 | 4,36 | 4,21 | | Heating energy efficiency class | (8) | | | | A+ | ++ | | | | Water flow DHW side | (6) | l/h | 9194 | 11061 | 12610 | 13717 | 15840 | 18435 | | Water pressure drop DHW side | (6) | kPa | 25 | 34 | 27 | 32 | 24 | 32 | | Water flow source side | (6) | l/h | 11906 | 14225 | 16427 | 17784 | 20650 | 23965 | | Water pressure drop source side | (6) | kPa | 39 | 54 | 44 | 51 | 39 | 51 | | General data | | | | | | | | | | Maximum current absorption | | A | 32,0 | 36,0 | 43,0 | 50,0 | 62,0 | 68,0 | | Start up current | | A | 117 | 140 | 161 | 143 | 171 | 208 | | Startup current with soft starter | | A | 60 | 68 | 81 | 91 | 111 | 126 | | Compressors / circuits | | | | | 2. | / 1 | | , | | Sound power level | (9)(E) | dB(A) | 78 | 74 | 75 | 78 | 79 | 80 | | Sound power level, low-noise version | (9) | dB(A) | 72 | 68 | 69 | 72 | 73 | 74 | | Transport / operating weight | | kg | 410 | 420 | 450 | 460 | 490 | 510 | Water temperature - user side 12°C/7°C, water temperature - dissipation side 30°C/35°C (EN14511:2022) n efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "Err 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Cooling water temperature 7°C, water flow rate same as in cooling mode Recovery water temperature 45°C, water flow rate same as in cooling mode Cooling water temperature 45°C, water flow rate same as in cooling mode Cooling water temperature 7°C, recovery water temperature 45°C DHW water temperature 40°C/45°C, water temperature - source side 10°C/7°C (EN14511:2022) n efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "Err 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Low temperature conditions. Seasonal energy efficiency class for MEDIUM TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++ → D] included in the range $A+++\to DJ$ Sound power level measured according to ISO 9614 EUROVENT certified data | LEP M | | | 112 | 132 | 142 | 144 | 162 | 164 | |---|---------|---------|-------|-------|---------|---------|-------|-------| | Power supply | | V-ph-Hz | | | 400 - 3 | 3N - 50 | | | | Cooling mode operation | | | | | | | | | | Cooling capacity | (1)(E) | kW | 106 | 118 | 133 | 147 | 148 | 157 | | Total power input | (1)(E) | kW | 24,3 | 27,1 | 30,6 | 34,5 | 34,4 | 36,7 | | EER | (1)(E) | | 4,36 | 4,33 | 4,36 | 4,26 | 4,30 | 4,27 | | SEER | (2) | | 6,40 | 6,38 | 6,31 | 6,07 | 6,17 | 6,19 | | Water flow user side | (1) | l/h | 18206 | 20227 | 22925 | 25327 | 25442 | 26966 | | Water pressure drop user side | (1)(E) | kPa | 31 | 38 | 35 | 41 | 38 | 33 | | Water flow source side | (1) | I/h | 22186 | 24656 | 27932 | 30967 | 31063 | 32998 | | Water pressure drop source side | (1)(E) | kPa | 45 | 54 | 49 | 60 | 54 | 48 | | Cooling mode operation and DWH in total r | ecovery | | | | | , | | | | Cooling capacity | (3)(E) | kW | 94,3 | 105 | 120 | 131 | 133 | 140 | | Heating capacity | (4)(E) | kW | 124 | 138 | 157 | 173 | 174 | 184 | | Total power input | (5)(E) | kW | 28,8 | 32,0 | 36,0 | 40,8 | 40,4 | 43,3 | | COP HRE | (5)(E) | | 7,57 | 7,61 | 7,68 | 7,46 | 7,60 | 7,50 | | Water flow user side | (3) | I/h | 18206 | 20227 | 22925 | 25327 | 25442 | 26966 | | Water pressure drop user side | (4) | kPa | 31 | 38 | 35 | 41 | 38 | 33 | | Water flow DHW side | (3) | l/h | 20905 | 23287 | 26432 | 29364 | 29401 | 31244 | | Water pressure drop DHW side | (4) | kPa | 40 | 49 | 45 | 54 | 49 | 43 | | Heating or DHW operation | ` | | | | , | , | | | | DHW heating capacity | (6)(E) | kW | 121 | 134 | 152 | 169 | 170 | 180 | | Total power input | (6)(E) | kW | 28,1 | 31,3 | 35,2 | 40,3 | 39,6 | 42,4 | | COP | (6)(E) | | 4,29 | 4,29 | 4,33 | 4,20 | 4,28 | 4,25 | | SCOP | (7) | | 4,29 | 4,24 | 4,29 | 4,34 | 4,28 | 4,28 | | Heating energy efficiency class | (8) | | | | A+ | ++ | | | | Water flow DHW side | (6) | l/h | 20905 | 23287 | 26432 | 29364 | 29401 | 31244 | | Water pressure drop DHW side | (6) | kPa | 40 | 49 | 45 | 54 | 49 | 43 | | Water flow source side | (6) | l/h | 27177 | 30319 | 34455 | 38020 | 38229 | 40474 | | Water pressure drop source side | (6) | kPa | 64 | 78 | 72 | 86 | 79 | 69 | | General data | | | | | | | | | | Maximum current absorption | | A | 72,0 | 76,0 | 87,0 | 101 | 97,0 | 124 | | Start up current | | A | 212 | 279 | 289 | 222 | 336 | 233 | | Startup current with soft starter | | A | 133 | 141 | 161 | 131 | 180 | 147 | | Compressors / circuits | | | 2/1 | 2/1 | 2/1 | 4/2 | 2/1 | 4/2 | | Sound power level | (9)(E) | dB(A) | 84 | 86 | 86 | 78 | 86 | 82 | | Sound power level, low-noise version | (9) | dB(A) | 78 | 80 | 80 | 72 | 80 | 76 | | Transport / operating weight | | kg | 690 | 700 | 770 | 1010 | 830 | 1050 | - (1) Water temperature user side 12°C/7°C, water temperature dissipation side 30°C/35°C (EN14511:2022) (2) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 F(1) F(2)] e [η = SEER / 2,5 F(1) F(2)]. For further information, please refer to the technical document "Err 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. (3) Cooling water temperature 7°C, water flow rate same as in cooling mode (4) Recovery water temperature 45°C, water flow rate same as in cooling mode (5) Cooling water temperature 7°C, recovery water temperature 45°C (6) DHW water temperature 7°C, recovery water temperature source side 10°C/7°C (EN14511:2022) (7) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 F(1) F(2)] e [η = SEER / 2,5 F(1) F(2)]. For further information, please refer to the technical document "Erp 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Low temperature conditions. (8) Seasonal energy efficiency class for MeBUIUM TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++ → DI - included in the range $A+++\to DJ$ Sound power level measured according to ISO 9614 EUROVENT certified data | LEPM | | | 182 | 184 | 204 | 214 | 244 | |--|--------|---------|-------|-------|---------------|-------|-------| | Power supply | | V-ph-Hz | | | 400 - 3N - 50 | | | | Cooling mode operation | | | | | | | | | Cooling capacity | (1)(E) | kW | 196 | 186 | 211 | 235 | 255 | | Total power input | (1)(E) | kW | 44,8 | 42,9 | 48,3 | 54,1 | 56,2 | | EER | (1)(E) | | 4,38 | 4,34 | 4,37 | 4,35 | 4,53 | | SEER | (2) | | 6,37 | 6,47 | 6,43 | 6,54 | 6,87 | | Water flow user side | (1) | l/h | 33780 | 32039 | 36308 | 40457 | 43793 | | Water pressure drop user side | (1)(E) | kPa | 34 | 31 | 39 | 47 | 27 | | Water flow source side | (1) | I/h | 41172 | 39112 | 44245 | 49307 | 53152 | | Water pressure drop source side | (1)(E) | kPa | 49 | 45 | 56 | 68 | 35 | | Cooling mode operation and DWH in total re | covery | | | | | | | | Cooling capacity | (3)(E) | kW | 176 | 167 | 189 | 211 | 229 | | Heating capacity | (4)(E) | kW | 230 | 219 | 247 | 276 | 297 | | Total power input | (5)(E) | kW | 52,6 | 50,2 | 56,8 | 63,6 | 66,5 | | COP HRE | (5)(E) | | 7,71 | 7,68 | 7,68 | 7,66 | 7,91 | | Water flow user side | (3) | I/h | 33780 | 32039 | 36308 | 40457 | 43793 | | Water pressure drop user side | (4) | kPa | 34 | 31 | 39 | 47 | 27 | | Water flow DHW side | (3) | l/h | 38731 | 36908 | 41796 | 46601 | 50165 | | Water pressure drop DHW side | (4) | kPa | 44 | 40 | 50 | 61 | 35 | | Heating or DHW operation | | | | | | | | | DHW heating capacity | (6)(E) | kW | 223 | 213 | 241 | 269 | 289 | | Total power input | (6)(E) | kW | 51,3 | 49,0 | 55,7 | 62,6 | 64,8 | | COP | (6)(E) | | 4,35 | 4,34 | 4,32 | 4,29 | 4,46 | | SCOP | (7) | | 4,34 | 4,37 | 4,31 | 4,34 | 4,43 | | Heating energy efficiency class | (8) | | | | A+++ | | | | Water flow DHW side | (6) | I/h | 38731 | 36908 | 41796 | 46601 | 50165 | | Water pressure drop DHW side | (6) | kPa | 44 | 40 | 50 | 61 | 35 | | Water flow source side | (6) | l/h | 50490 | 48044 | 54439 | 60721 | 65630 | | Water pressure drop source side | (6) | kPa | 71 | 65 | 81 | 99 | 51 | | General data | | | | | | | | | Maximum current absorption | | A | 131 | 136 | 144 | 153 | 163 | | Start up current | | A | 375 | 276 | 284 | 355 | 366 | | Startup current with soft starter | | A | 240 | 175 | 185 | 195 | 208 | | Compressors / circuits | | | 2/1 | 4/2 | 4/2 | 4/2 | 4/2 | | Sound power level | (9)(E) | dB(A) | 88 | 83 | 87 | 89 | 89 | | Sound power level, low-noise version | (9) | dB(A) | 82 | 77 | 81 | 83 | 83 | | Transport / operating weight | | kg | 890 | 1130 | 1280 | 1350 | 1840 | ⁽¹⁾ Water temperature - user side 12°C / 7°C, water temperature - dissipation side 30°C / 35°C (EN14511:2022) (2) η efficiency values
for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. (3) Cooling water temperature 7°C, water flow rate same as in cooling mode (4) Recovery water temperature 45°C, water flow rate same as in cooling mode (5) Cooling water temperature 7°C, recovery water temperature 45°C (6) DHW water temperature 40°C / 45°C, water flow rate same as in cooling mode (7) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Low temperature conditions. (8) Seasonal energy efficiency class for MEDIUM TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++ → D] (9) Sound power level measured according to ISO 9614 | LEP M | | | 284 | 314 | 344 | 374 | 424 | |--|--------|---------|-------|-------|---------------|--------|--------| | Power supply | | V-ph-Hz | | | 400 - 3N - 50 | | | | Cooling mode operation | | | | | | | | | Cooling capacity | (1)(E) | kW | 268 | 293 | 342 | 391 | 444 | | Total power input | (1)(E) | kW | 60,2 | 68,3 | 78,7 | 89,6 | 102 | | EER | (1)(E) | | 4,45 | 4,29 | 4,35 | 4,36 | 4,34 | | SEER | (2) | | 6,67 | 6,31 | 6,40 | 6,47 | 6,77 | | Water flow user side | (1) | I/h | 46045 | 50342 | 58850 | 67166 | 76360 | | Water pressure drop user side | (1)(E) | kPa | 30 | 35 | 33 | 33 | 36 | | Water flow source side | (1) | I/h | 56037 | 61627 | 71915 | 82041 | 93312 | | Water pressure drop source side | (1)(E) | kPa | 40 | 48 | 45 | 47 | 52 | | Cooling mode operation and DWH in total re | covery | | | | | | | | Cooling capacity | (3)(E) | kW | 241 | 264 | 307 | 350 | 399 | | Heating capacity | (4)(E) | kW | 314 | 346 | 402 | 457 | 521 | | Total power input | (5)(E) | kW | 71,0 | 80,2 | 92,4 | 105 | 119 | | COP HRE | (5)(E) | | 7,82 | 7,60 | 7,68 | 7,69 | 7,71 | | Water flow user side | (3) | l/h | 46045 | 50342 | 58850 | 67166 | 76360 | | Water pressure drop user side | (4) | kPa | 30 | 35 | 33 | 33 | 36 | | Water flow DHW side | (3) | I/h | 52937 | 58369 | 67838 | 77045 | 87830 | | Water pressure drop DHW side | (4) | kPa | 38 | 46 | 42 | 43 | 47 | | Heating or DHW operation | | | | | | | | | DHW heating capacity | (6)(E) | kW | 305 | 336 | 391 | 444 | 506 | | Total power input | (6)(E) | kW | 69,3 | 78,2 | 90,0 | 102 | 116 | | COP | (6)(E) | | 4,40 | 4,30 | 4,34 | 4,34 | 4,35 | | SCOP | (7) | | 4,37 | 4,29 | 4,34 | 4,34 | 4,20 | | Heating energy efficiency class | (8) | | | | A+++ | | | | Water flow DHW side | (6) | l/h | 52937 | 58369 | 67838 | 77045 | 87830 | | Water pressure drop DHW side | (6) | kPa | 38 | 46 | 42 | 43 | 47 | | Water flow source side | (6) | l/h | 69045 | 75765 | 88200 | 100174 | 114375 | | Water pressure drop source side | (6) | kPa | 58 | 70 | 65 | 67 | 75 | | General data | | | | | | | | | Maximum current absorption | | Α | 174 | 194 | 228 | 262 | 296 | | Start up current | | Α | 376 | 433 | 467 | 506 | 541 | | Startup current with soft starter | | Α | 221 | 247 | 287 | 328 | 370 | | Compressors / circuits | | | 4/2 | 4/2 | 4/2 | 4/2 | 4/2 | | Sound power level | (9)(E) | dB(A) | 89 | 89 | 90 | 91 | 94 | | Sound power level, low-noise version | (9) | dB(A) | 83 | 83 | 84 | 85 | 88 | | Transport / operating weight | | kg | 1940 | 2040 | 2110 | 2180 | 2380 | - (1) Water temperature user side 12°C/7°C, water temperature dissipation side 30°C/35°C (EN14511:2022) (2) n efficiency values for heating and cooling are respectively calculated by the following formulas: [n = SCOP / 2,5 F(1) F(2)] e [n = SEER / 2,5 F(1) F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. (3) Cooling water temperature 7°C, water flow rate same as in cooling mode (4) Recovery water temperature 45°C, water flow rate same as in cooling mode (5) Cooling water temperature 7°C, recovery water temperature 45°C (6) DHW water temperature 7°C, recovery water temperature resource side 10°C/7°C (EN14511:2022) (7) n efficiency values for heating and cooling are respectively calculated by the following formulas: [n = SCOP / 2,5 F(1) F(2)] e [n = SEER / 2,5 F(1) F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Low temperature conditions. (8) Seasonal energy efficiency class for MEDIUM TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++ → DI - this product is included in the range A+++ \rightarrow D] Sound power level measured according to ISO 9614 EUROVENT certified data | LEPP | | | 042 | 052 | 062 | 072 | 082 | 092 | |---|--------|---------|-------|-------|---------|---------|-------|-------| | Power supply | | V-ph-Hz | | | 400 - 3 | BN - 50 | | | | Cooling mode operation | | | | | | | | | | Cooling capacity | (1)(E) | kW | 45,1 | 52,1 | 61,7 | 67,2 | 78,1 | 90,0 | | Total power input | (1)(E) | kW | 10,8 | 12,8 | 14,7 | 16,3 | 18,4 | 22,2 | | EER | (1)(E) | | 4,16 | 4,08 | 4,19 | 4,12 | 4,25 | 4,06 | | SEER | (2) | | 5,61 | 5,52 | 5,87 | 5,81 | 6,17 | 6,12 | | Water flow user side | (1) | l/h | 7762 | 8971 | 10625 | 11569 | 13439 | 15495 | | Water pressure drop user side | (1)(E) | kPa | 29 | 38 | 41 | 37 | 29 | 39 | | Water flow source side | (1) | I/h | 9542 | 11046 | 13031 | 14225 | 16462 | 19100 | | Water pressure drop source side | (1)(E) | kPa | 41 | 54 | 44 | 53 | 41 | 55 | | Cooling and heating mode in total heat reco | overy | | | | | | | | | Cooling capacity | (3)(E) | kW | 40,2 | 46,5 | 55,1 | 59,8 | 69,7 | 80,5 | | Heating capacity | (4)(E) | kW | 53,4 | 62,1 | 73,2 | 79,7 | 92,0 | 107 | | Total power input | (5)(E) | kW | 12,9 | 15,1 | 17,5 | 19,4 | 21,7 | 25,8 | | COP HRE | (5)(E) | | 7,25 | 7,19 | 7,33 | 7,19 | 7,44 | 7,27 | | Water flow cooling side | (3) | I/h | 7762 | 8971 | 10625 | 11569 | 13439 | 15495 | | Water pressure cooling heating side | (4) | kPa | 29 | 38 | 41 | 37 | 29 | 39 | | Water flow heating side | (3) | l/h | 9238 | 10721 | 12635 | 13772 | 15896 | 18483 | | Water pressure drop heating side | (4) | kPa | 39 | 51 | 41 | 50 | 39 | 52 | | Heating mode operation | | | | | | | | | | Heating capacity | (6)(E) | kW | 53,3 | 61,9 | 72,9 | 79,5 | 91,7 | 107 | | Total power input | (6)(E) | kW | 13,0 | 15,2 | 17,6 | 19,5 | 21,8 | 25,8 | | COP | (6)(E) | | 4,11 | 4,08 | 4,15 | 4,08 | 4,21 | 4,13 | | SCOP | (7) | | 4,16 | 4,30 | 4,38 | 4,31 | 4,36 | 4,21 | | Heating energy efficiency class | (8) | | | | A+ | ++ | | | | Water flow user side | (6) | l/h | 9238 | 10721 | 12635 | 13772 | 15896 | 18483 | | Water pressure drop user side | (6) | kPa | 39 | 51 | 41 | 50 | 39 | 52 | | Water flow source side | (6) | l/h | 11881 | 13816 | 16341 | 17714 | 20565 | 23832 | | Water pressure drop source side | (6) | kPa | 63 | 83 | 88 | 79 | 62 | 84 | | General data | | | | | | | | | | Maximum current absorption | | A | 32,0 | 36,0 | 43,0 | 50,0 | 62,0 | 68,0 | | Start up current | | Α | 117 | 140 | 161 | 143 | 171 | 208 | | Startup current with soft starter | | A | 60 | 68 | 81 | 91 | 111 | 126 | | Compressors / circuits | | | | | 2, | /1 | | , | | Sound power level | (9)(E) | dB(A) | 78 | 74 | 75 | 78 | 79 | 80 | | Sound power level, low-noise version | (9) | dB(A) | 72 | 68 | 69 | 72 | 73 | 74 | | Transport / operating weight | | kg | 410 | 420 | 450 | 460 | 490 | 510 | ⁽¹⁾ Water temperature - user side 12°C/7°C, water temperature - dissipation side 30°C/35°C (EN14511:2022) 1) nefficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. (3) Cooling water temperature 7°C, water flow rate same as in cooling mode (4) Recovery water temperature 45°C, water flow rate same as in cooling mode (5) Cooling water temperature 45°C, water flow rate same as in cooling mode (6) User side water temperature 40°C / 45°C, water temperature - source side 10°C / 7°C (EN14511:2022) (7) nefficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Low temperature conditions. (8) Seasonal energy efficiency class for MEDIUM TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++ → D] included in the range A+++ → D] (9) Sound power level measured according to ISO 9614 (E) EUROVENT certified data | LEP P | | | 112 | 132 | 142 | 144 | 162 | 164 | | |---|--------|---------|---------------|-------|-------|-------|-------|-------|--| | Power supply V-ph-Hz | | V-ph-Hz | 400 - 3N - 50 | | | | | | | | Cooling mode operation | | | | | | | | | | | Cooling capacity | (1)(E) | kW | 105 | 118 | 133 | 147 | 148 | 154 | | | Total power input | (1)(E) | kW | 24,3 | 27,1 | 30,5 | 34,6 | 34,4 | 37,2 | | | EER | (1)(E) | | 4,32 | 4,34 |
4,37 | 4,25 | 4,30 | 4,14 | | | SEER | (2) | | 6,40 | 6,38 | 6,31 | 6,07 | 6,17 | 6,19 | | | Water flow user side | (1) | l/h | 18052 | 20226 | 22925 | 25326 | 25442 | 26513 | | | Water pressure drop user side | (1)(E) | kPa | 32 | 37 | 34 | 41 | 38 | 40 | | | Water flow source side | (1) | I/h | 22042 | 24649 | 27925 | 30973 | 31068 | 32601 | | | Water pressure drop source side | (1)(E) | kPa | 43 | 52 | 47 | 57 | 51 | 57 | | | Cooling and heating mode in total heat reco | very | | | | | | | | | | Cooling capacity | (5)(E) | kW | 94,3 | 105 | 120 | 131 | 133 | 138 | | | Heating capacity | (6)(E) | kW | 125 | 138 | 157 | 173 | 174 | 183 | | | Total power input | (7)(E) | kW | 29,0 | 32,0 | 36,0 | 40,8 | 40,4 | 43,7 | | | COP HRE | (7)(E) | | 7,56 | 7,61 | 7,68 | 7,46 | 7,60 | 7,33 | | | Water flow cooling side | (3) | l/h | 18052 | 20226 | 22925 | 25326 | 25442 | 26513 | | | Water pressure cooling heating side | (4) | kPa | 32 | 37 | 34 | 41 | 38 | 40 | | | Water flow heating side | (3) | l/h | 21633 | 23861 | 27058 | 29886 | 30096 | 31588 | | | Water pressure drop heating side | (4) | kPa | 41 | 49 | 45 | 53 | 49 | 53 | | | Heating mode operation | | | | | | | | | | | Heating capacity | (6)(E) | kW | 125 | 138 | 156 | 172 | 174 | 182 | | | Total power input | (6)(E) | kW | 29,1 | 32,1 | 36,0 | 41,0 | 40,4 | 43,9 | | | COP | (6)(E) | | 4,29 | 4,29 | 4,33 | 4,20 | 4,29 | 4,15 | | | SCOP | (7) | | 4,29 | 4,24 | 4,29 | 4,34 | 4,28 | 4,28 | | | Heating energy efficiency class | (8) | | | | A+ | ++ | | | | | Water flow user side | (6) | l/h | 21633 | 23861 | 27058 | 29886 | 30096 | 31588 | | | Water pressure drop user side | (6) | kPa | 41 | 49 | 45 | 53 | 49 | 53 | | | Water flow source side | (6) | l/h | 28118 | 31073 | 35278 | 38699 | 39167 | 40747 | | | Water pressure drop source side | (6) | kPa | 70 | 81 | 75 | 88 | 82 | 87 | | | General data | | | | | | | | | | | Maximum current absorption | | Α | 72,0 | 76,0 | 87,0 | 101 | 97,0 | 124 | | | Start up current | | Α | 212 | 279 | 289 | 222 | 336 | 233 | | | Startup current with soft starter | | Α | 133 | 141 | 161 | 131 | 180 | 147 | | | Compressors / circuits | | | 2/1 | 2/1 | 2/1 | 4/2 | 2/1 | 4/2 | | | Sound power level | (9)(E) | dB(A) | 84 | 86 | 86 | 78 | 86 | 82 | | | Sound power level, low-noise version | (9) | dB(A) | 78 | 80 | 80 | 72 | 80 | 76 | | | Transport / operating weight | | kg | 690 | 700 | 770 | 1010 | 830 | 1050 | | - (1) Water temperature user side 12°C/7°C, water temperature dissipation side 30°C/35°C (EN14511:2022) (2) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 F(1) F(2)] e [η = SEER / 2,5 F(1) F(2)]. For further information, please refer to the technical document "Err 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. (3) Cooling water temperature 7°C, water flow rate same as in cooling mode (4) Recovery water temperature 45°C, water flow rate same as in cooling mode (5) Cooling water temperature 7°C, recovery water temperature 45°C (6) User side water temperature 40°C / 45°C, water temperature source side 10°C / 7°C (EN14511:2022) (7) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 F(1) F(2)] e [η = SEER / 2,5 F(1) F(2)]. For further information, please refer to the technical document "Erp 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Low temperature conditions. (8) Seasonal energy efficiency class for MeBUIUM TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++ → DI - included in the range $A+++\to DJ$ Sound power level measured according to ISO 9614 EUROVENT certified data | LEPP | | | 182 | 184 | 204 | 214 | 244 | |--|--------|---------|-------|-------|---------------|-------|-------| | Power supply | | V-ph-Hz | | | 400 - 3N - 50 | | | | Cooling mode operation | | | | | | | | | Cooling capacity | (1)(E) | kW | 193 | 184 | 208 | 235 | 255 | | Total power input | (1)(E) | kW | 45,4 | 43,3 | 49,1 | 54,0 | 56,2 | | EER | (1)(E) | | 4,26 | 4,25 | 4,24 | 4,36 | 4,53 | | SEER | (2) | | 6,37 | 6,47 | 6,43 | 6,54 | 6,87 | | Water flow user side | (1) | l/h | 33250 | 31616 | 35778 | 40456 | 43793 | | Water pressure drop user side | (1)(E) | kPa | 39 | 37 | 45 | 46 | 27 | | Water flow source side | (1) | I/h | 40701 | 38732 | 43800 | 49301 | 53152 | | Water pressure drop source side | (1)(E) | kPa | 55 | 51 | 64 | 64 | 35 | | Cooling and heating mode in total heat rec | overy | | | | | | | | Cooling capacity | (5)(E) | kW | 173 | 165 | 186 | 211 | 229 | | Heating capacity | (6)(E) | kW | 228 | 217 | 245 | 276 | 297 | | Total power input | (7)(E) | kW | 53,1 | 50,7 | 57,5 | 63,6 | 66,5 | | COP HRE | (7)(E) | | 7,55 | 7,52 | 7,51 | 7,66 | 7,91 | | Water flow cooling side | (3) | I/h | 33250 | 31616 | 35778 | 40456 | 43793 | | Water pressure cooling heating side | (4) | kPa | 39 | 37 | 45 | 46 | 27 | | Water flow heating side | (3) | l/h | 39278 | 37444 | 42416 | 47748 | 51400 | | Water pressure drop heating side | (4) | kPa | 51 | 48 | 60 | 61 | 33 | | Heating mode operation | | | | | | | | | Heating capacity | (6)(E) | kW | 226 | 216 | 244 | 275 | 296 | | Total power input | (6)(E) | kW | 53,1 | 50,8 | 57,8 | 64,0 | 66,5 | | COP | (6)(E) | | 4,26 | 4,25 | 4,23 | 4,30 | 4,45 | | SCOP | (7) | | 4,34 | 4,37 | 4,31 | 4,34 | 4,43 | | Heating energy efficiency class | (8) | | | | A+++ | | | | Water flow user side | (6) | l/h | 39278 | 37444 | 42416 | 47748 | 51400 | | Water pressure drop user side | (6) | kPa | 51 | 48 | 60 | 61 | 33 | | Water flow source side | (6) | l/h | 50988 | 48551 | 55050 | 62254 | 67248 | | Water pressure drop source side | (6) | kPa | 85 | 79 | 98 | 99 | 59 | | General data | | | | | | | | | Maximum current absorption | | A | 131 | 136 | 144 | 153 | 163 | | Start up current | | Α | 375 | 276 | 284 | 355 | 366 | | Startup current with soft starter | | A | 240 | 175 | 185 | 195 | 208 | | Compressors / circuits | | | 2/1 | 4/2 | 4/2 | 4/2 | 4/2 | | Sound power level | (9)(E) | dB(A) | 88 | 83 | 87 | 89 | 89 | | Sound power level, low-noise version | (9) | dB(A) | 82 | 77 | 81 | 83 | 83 | | Transport / operating weight | | kg | 890 | 1130 | 1280 | 1350 | 1840 | ⁽¹⁾ Water temperature - user side 12°C / 7°C, water temperature - dissipation side 30°C / 35°C (EN14511:2022) (2) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. (3) Cooling water temperature 7°C, water flow rate same as in cooling mode (4) Recovery water temperature 45°C, water flow rate same as in cooling mode (5) Cooling water temperature 45°C, water temperature 45°C (6) User side water temperature 40°C / 45°C, water temperature - source side 10°C / 7°C (EN14511:2022) (7) η efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 - F(1) - F(2)] e [η = SEER / 2,5 - F(1) - F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Low temperature conditions. (8) Seasonal energy efficiency class for MEDIUM TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the range A+++ → D] (9) Sound power level measured according to ISO 9614 | LEP P | | | 284 | 314 | 344 | 374 | 424 | |--|---------|---------|-------|-------|---------------|--------|--------| | Power supply | | V-ph-Hz | | | 400 - 3N - 50 | • | | | Cooling mode operation | | | | | | | | | Cooling capacity | (1)(E) | kW | 268 | 293 | 337 | 381 | 436 | | Total power input | (1)(E) | kW | 60,2 | 68,3 | 79,5 | 90,9 | 103 | | EER | (1)(E) | | 4,45 | 4,29 | 4,24 | 4,19 | 4,21 | | SEER | (2) | | 6,67 | 6,31 | 6,40 | 4,47 | 6,77 | | Water flow user side | (1) | I/h | 46045 | 50342 | 57960 | 65436 | 74851 | | Water pressure drop user side | (1)(E) | kPa | 30 | 35 | 37 | 40 | 41 | | Water flow source side | (1) | I/h | 56037 | 61627 | 71109 | 80440 | 91927 | | Water pressure drop source side | (1)(E) | kPa | 40 | 48 | 51 | 55 | 57 | | Cooling and heating mode in total heat recov | ery ery | | | | | | | | Cooling capacity | (5)(E) | kW | 241 | 264 | 303 | 342 | 392 | | Heating capacity | (6)(E) | kW | 314 | 346 | 398 | 450 | 515 | | Total power input | (7)(E) | kW | 71,0 | 80,2 | 93,0 | 106 | 120 | | COP HRE | (7)(E) | | 7,82 | 7,60 | 7,54 | 7,47 | 7,55 | | Water flow cooling side | (3) | I/h | 46045 | 50342 | 57960 | 65436 | 74851 | | Water pressure cooling heating side | (4) | kPa | 30 | 35 | 37 | 40 | 41 | | Water flow heating side | (3) | l/h | 54223 | 59828 | 68859 | 77890 | 89023 | | Water pressure drop heating side | (4) | kPa | 38 | 46 | 49 | 52 | 54 | | Heating mode operation | | | | | | | | | Heating capacity | (6)(E) | kW | 312 | 345 | 397 | 449 | 513 | | Total power input | (6)(E) | kW | 71,0 | 80,1 | 93,3 | 106 | 121 | | COP | (6)(E) | | 4,40 | 4,30 | 4,25 | 4,22 | 4,25 | | SCOP | (7) | | 4,37 | 4,29 | 4,34 | 4,34 | 4,20 | | Heating energy efficiency class | (8) | | | | A+++ | | | | Water flow user side | (6) | l/h | 54223 | 59828 | 68859 | 77890 | 89023 | | Water pressure drop user side | (6) | kPa | 38 | 46 | 49 | 52 | 54 | | Water flow source side | (6) | l/h | 70760 | 77706 | 89182 | 100719 | 115372 | | Water pressure drop source side | (6) | kPa | 64 | 76 | 81 | 86 | 89 | | General data | | | | | | | | | Maximum current absorption | | Α | 174 | 194 |
228 | 262 | 296 | | Start up current | | Α | 376 | 433 | 467 | 506 | 541 | | Startup current with soft starter | | Α | 221 | 247 | 287 | 328 | 370 | | Compressors / circuits | | | 4/2 | 4/2 | 4/2 | 4/2 | 4/2 | | Sound power level | (9)(E) | dB(A) | 89 | 89 | 90 | 91 | 94 | | Sound power level, low-noise version | (9) | dB(A) | 83 | 83 | 84 | 85 | 88 | | Transport / operating weight | | kg | 1940 | 2040 | 2110 | 2180 | 2380 | - (1) Water temperature user side 12°C/7°C, water temperature dissipation side 30°C/35°C (EN14511:2022) (2) n efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 F(1) F(2)] e [η = SEER / 2,5 F(1) F(2)]. For further information, please refer to the technical document "ErP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. - please refer to the technical document "EIP 2009/12/EL DIRECTIVE" in the catalogue introducing pages, or to the EN 14825:2022 regulation. (4) Recovery water temperature 7°C, water flow rate same as in cooling mode (5) Cooling water temperature 7°C, recovery water temperature 45°C (6) User side water temperature 40°C / 45°C, water temperature source side 10°C / 7°C (EN14511:2022) (7) n efficiency values for heating and cooling are respectively calculated by the following formulas: [η = SCOP / 2,5 F(1) F(2)] e [η = SEER / 2,5 F(1) F(2)]. For further information, please refer to the technical document "EIP 2009/125/EC DIRECTIVE" in the catalogue introducing pages, or to the EN14825:2022 regulation. Low temperature conditions. (8) Seasonal energy efficiency class for MEDIUM TEMPERATURE room heating under AVERAGE climatic conditions [EUROPEAN REGULATION No 811/2013. The energy efficiency class of this product is included in the rappe A++++ -> DI - this product is included in the range A+++ \rightarrow D] Sound power level measured according to ISO 9614 EUROVENT certified data ### DIMENSIONAL DRAWINGS ## LEP 144 - 184 #### LEGEND | 1 | User side - inlet (Victaulic 2 ½") | |---|--| | 2 | User side - outlet (Victaulic 2 1/2") | | 3 | DHW side - inlet (Victaulic 2 ½") | | 4 | DHW side - outlet (Victaulic 2 ½") | | 5 | Dissipation side - inlet (Victaulic 2 1/2") | | 6 | Dissipation side - outlet (Victaulic 2 1/2") | | 7 | User interface | | 8 | Lifting points | | 9 | Power supply input | | | | | MODEL | VERSION | | |---------|---------|-----| | LEP 144 | M-P | S-L | | LEP 164 | M-P | S-L | | LEP 184 | M-P | S-L | | | | | ### DIMENSIONAL DRAWINGS | 1 | User side - inlet (Victaulic 3") | |---|--| | 2 | User side - outlet (Victaulic 3") | | 3 | DHW side - inlet (Victaulic 3") | | 4 | DHW side - outlet (Victaulic 3") | | 5 | Dissipation side - inlet (Victaulic 3") | | 6 | Dissipation side - outlet (Victaulic 3") | | 7 | User interface | | 8 | Lifting points | | | | | MODEL | VERSION | | |---------|---------|-----| | LEP 244 | M-P | S-L | | LEP 284 | M-P | S-L | | LEP 314 | M-P | S-L | | LEP 344 | M-P | S-L | | LEP 374 | M-P | S-L | | LEP 424 | M-P | S-L | | | | | LEGEND Power supply input # HEAT RECOVERY UNIT AND THERMOVENTILATING Introduction p.380 RPE p.382 # EXPERIENCE AND FLEXIBILITY IN AIR TREATMENT FOR CIVIL AND INDUSTRIAL AIR CONDITIONING. Cetra was founded at the end of the '70s in a small 300 sqm. warehouse where, thanks to skill acquired from previous experience in the air conditioning sector, the first thermo-ventilating units (TVU) were manufactured for the local market. In the mid '80s one of the founders patented the technical solution that everyone in the sector knows today as the 3-way joint, the pivotal development that made it possible to build modular TVUs from that point on. At the same time they began to develop their first relationships with the major companies in the sector (Carrier, Marelli), making it possible, over the following decades, for the company to establish itself in Italy as one of the standard-setting businesses in the air treatment sector, and to expand into the international market. Becoming part of Galletti group boosted the company's growth, thanks to beneficial synergies with other companies in the Group, creating cross-competences and technological solutions. Throughout this significant evolution, Cetra has maintained the typical values of a family-run business, where work is considered a trade, and is therefore a guarantee for excellent quality. Today, within Galletti Group, Cetra is the leader of the air treatment market for the residential and tertiary sectors, with a complete range of Eurovent-certified products. The air treatment facilities can be set so that the customer has the option of integrating them with any of the Galletti Group products. The company has developed relevant technical skills in specific sectors, such as pharmaceutical, hospital and food. The Cetra production facility in Altedo (BO) houses a sheet metal processing division, an extensive production line divided into 6 different areas, each one dedicated to a specific sector, and a complete testing line for all of the units. Following the Galletti Group philosophy of managing all of the production process phases in-house, today Cetra is known on the market as one of the most flexible and dynamic companies in the air treatment industry. It is known for being able to fulfil the specific requests of its stakeholders, confirmed by the addition of the rooftop air-to-air monobloc independent air conditioner in the Cetra product catalogue. #### HEAT RECOVERY UNIT #### RPE S 9 models 2 configurations Cross flow heat exchanger By pass free cooling EC motor Efficiency 90% Air flow: from 500 to 6000 mc/h RPE X 9 models 2 configurations Cross flow heat exchanger By pass free cooling EC motor Efficiency 90% Air flow: from 500 to 6000 mc/h #### THERMOVENTILATING #### TH 9 models 2 or 4 pipes system EC plug-fans from 6 to 300 kW Air flow: from 750 to 28000 mc/h Cooling capacity: 9 models 2 or 4 pipes system EC plug-fans Air flow: from 750 to 28000 mc/h Cooling capacity: from 6 to 300 kW #### ESTRACTORS #### TCE/TCX(Atex) 5 models EC fans AESP up to 600 pa Air flow: from 800 to 8000 mc/h (TCE) from 9000 to 16500 mc/h (TCX) #### AHU #### CT 39 models Completely customized Indoor or outdoor installation Air flow: from1000 to 100000 mc/h #### ADJUSTABLE AHU #### CTR 39 models Complete with regulation Completely customized Indoor or outdoor installation Air flow: from1000 to 100000 mc/h #### UTX EUROVENT #### UTX 39 models Eurovent certification Completely customized Installation indoor or outdoor Air flow: from1000 to 100000 mc/h #### AHU POOL APPLICATION #### СТР 39 models Pre-painted component Chlorine resistant Completely customized Indoor or outdoor installation from1000 to 100000 mc/h # CTA HOSPITAL APPLICATION #### CTH 39 models Component AISI 316 Sanification unit Completely customized Indoor or outdoor installation Air flow: from1000 to 100000 mc/h #### AHU FOOD APPLICATION #### CTF 39 models Component AISI 316 Mineral wool insulation Completely customized Indoor or outdoor insulation Air flow: from 1000 to 100000 mc/h www.cetra.it HR-381 ### Mechanical ventilation units with heat recovery ### RPE 500 - 6000 mc/h Brushless Ducted ### PLUS - » Air flow up to 6.000 m3/h - » Horizontal/vertical configuration - » Plug-fan with integrated inverter - » Internal electric board - » Inspection and maintenance possible from the side (for all models) and also from the bottom (for horizontal models) - » Easy maintenance - » Double outlet filtration (F7 + F9) (ACCESSORY) - » Automatic Free cooling, with bypass actuator (ACCESSORY) - » Combined with hydronic or direct expansion units (ACCESSORY) - » Jonix sanitizing module (ACCESSORY) # Static upstream-flow heat recovery unit, made of aluminum, with high efficiency (90%) The units of the RPE series for air recirculation and heat recovery, available in 2 versions (RPE-S and RPE-X) and 9 models are characterized by closing panels made of a double sheet of galvanized steel, pre-painted on the outer surface, completely removable for inspection/maintenance, and with different inlet/outlet configurations. Internal heat and sound insulation made from polyurethane foam or mineral wool with a thickness of 30 mm. Ventilation sections with directly coupled electric fans with motor BLDC. Upstream-flow heat recovery, with aluminium heat exchanger sealed at the ends in order to prevent contamination of the fresh air. Bypass damper inserted inside the unit controlled by the EVO control system (ACCESSORY). F7 filter on the outlet (F9 optional) and M6 on the intake. Condensate collection and drainage container constructed with AISI 304 stainless steel sheet. Designed for inclusion of heating exchanger inside the unit (ACCESSORY). #### AVAILABLE VERSION #### RPE-S Standard version with polyurethane insulation #### RPE - X Extra comfort version with mineral wool insulation and thermal break profile #### MAIN COMPONENTS BASE UNIT #### Structure Closing panels made of a double sheet of galvanized steel, prepainted on the outer surface, completely removable for inspection/ maintenance, and with different inlet/outlet configurations; ### Internal heat and sound insulation Made from polyurethane foam (RPE-S δ 38 kg/m³) or mineral wool (RPE-X δ 90 kg/m³) with a thickness of 30 mm. Fire reaction A1 class. #### Controller Power board in control cabinet and display EVO supplied separately, for wall installation. #### **Heat recovery** Upstream-flow heat recuperator, with aluminium frame, aluminium heat exchanger block with self-distanced fins and sealed at the ends in order to prevent contamination of the fresh air by the expelled air. Condensate collection and drainage container constructed with AISI 304 stainless steel sheet. Minimum heat efficiency 73%, complete with internal bypass damper. #### **Filter section** - -Medium-efficiency filtering section on the room
air intake Class M6 (EPM 10 80%; EN 16890). - High-efficiency filtering section on the outside air intake Class F7 (EPM 1 50%; EN 16890). #### Fans Ventilation sections with EC plug-fan with $0-10 \, \text{V}$ C/C control. #### By-pass for free cooling The heat recovery unit, inside the unit, includes the single-control dual damper for managing the bypass. The damper can be integrated with servo control with on/off control signal (ACCESSORY). Free-cooling operation can be managed by the EVO SYSTEM control. #### **ACCESSORIES** #### Regulation Quality air control (only with Indoor Air Quality (CO2/VOC), mouted and wired on board) Control at constant air flow Control at constant static pressure #### Internal coils Antifreeze heating element (2 steps) $Electric \ heating \ coil \ (2 \ steps \ / \ modulating \ 0-10 \ V + NTC \ control \ fix \ point \ outlet \ or \ ambient)$ Water heating coil Water cooling and heating coil only for size 055 and 110 $\,$ DX coil (R410a) for cooling and heating only for size 055 and 110 (with signal ON/OFF motocondensing / 0-10 Vcc VRF + NTC control outlet or ambient fix point) #### **External coils** Water cooling and heating coil only for size from 175 to $\,600$ DX coil (R410a) for cooling and heating only ffor size from 175 to 600 (with signal ON/OFF motocondensing / $0-10\,\text{Vcc}\,\text{VRF} + \text{NTC}$ control outlet or ambient fix point) #### Hydronic coil valves 2 or 3 way modulating valve + NTC control outlet or ambient fix point)(1) (2) #### Servomotor ON/OFF servomotor (mounted, wired and operated) for by-pass #### Other accessories Dampers with ON/OFF servo control on the outside air and exhaust side (fitted, wired and operated) Support feet (3) Protection Canopy (4) #### Filtration and sanitisation F9 filter outlet (replacing F7) #### **Double filtration** stage (F7 + F9) **outlet** Sanitizing system modul Jonix, cold plasma (2) - $\hbox{ (1) 2-3 way valve \ and actuators are supplied loose (installation and connectors not included).} \\$ - (2) Power supply cannot be derived from EVO or for 2-3 way modulating valv or for sanitizing system modul Jonix (3) For horizontal version, indoor, for floor installation (are included om external version and not available for ceiling installation). - (4) The canopy is already included in the outdoor versions. ATTENTION: the post-heating treatment is NOT available. ### **Heat recovery unit RPE** ### RATED TECHNICAL DATA | 222 | | | 55 | 110 | 175 | 220 | 255 | 320 | 410 | 500 | 600 | |----------------------------------|-----|---------|----------|----------|----------|------------|------------------|--------------|----------|----------|----------| | RPE | | | | H | | H- | ·V | | | V | | | Air flow rate | | m³/h | 550 | 1100 | 1750 | 2200 | 2550 | 3200 | 4100 | 5000 | 6000 | | Maxium available static pressure | | Pa | 360 | 330 | 390 | 230 | 400 | 230 | 400 | 190 | 530 | | Rated available static pressure | | Pa | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | | Sound power level (outlet) | (1) | dB (A) | 72,8 | 77 | 74,6 | 79,3 | 74,2 | 78,2 | 82,7 | 85,8 | 81,8 | | HEAT RECOVERY UNIT | | | | | | Winter ope | eration (balance | ed air flow) | | | | | Wet efficiency | | % | 87,7 | 88,3 | 90,3 | 90,3 | 92,7 | 92,0 | 91,7 | 92,3 | 92,7 | | Recovery | | Kw | 4,85 | 9,77 | 15,93 | 20,03 | 23,78 | 29,65 | 37,8 | 46,5 | 56,0 | | Dry efficiency | (*) | % | 75,5 | 77,9 | 79,7 | 79,6 | 81,4 | 80,6 | 80,0 | 80,2 | 80,5 | | Outlet air temperature | | °C | 16,3 | 16,5 | 17,1 | 17,1 | 17,8 | 17,6 | 17,5 | 17,7 | 17,8 | | | | | | | | Summer op | eration (balanc | ed air flow) | | | | | Wet efficiency | | % | 74,5 | 76,8 | 77,3 | 78 | 78 | 78,9 | 78,4 | 78,5 | 78,8 | | Recovery | | Kw | 1,25 | 2,59 | 4,21 | 5,29 | 6,26 | 7,77 | 9,9 | 12,1 | 14,6 | | Outlet air temperature | | °C | 28,2 | 28,1 | 27,9 | 27,9 | 27,7 | 27,9 | 27,8 | 28 | 28 | | FANS | | | | | | | | | | | | | Number of fans | (2) | n° | | | | | 2 | | | | | | Electrical input max | (2) | Kw | 0,34 | 0,68 | 1 | 1 | 1,48 | 1,48 | 3 | 3 | 4,2 | | Maximum total power consumption | (2) | А | 2,7 | 5,4 | 4,4 | 4,4 | 7,6 | 7,6 | 4,8 | 4,8 | 6,8 | | Protection rating | | IP | 54 | | | | | | | | | | Insulation class | | | | | | | F | | | | | | Power supply | | V/ph/Hz | 230/1/50 | 230/1/50 | 230/1/50 | 230/1/50 | 230/1/50 | 230/1/50 | 400/3/50 | 400/3/50 | 400/3/50 | Winter condition Evternal air temperature 10°C P.S. II.P. 000/ Summer condition External air temperature - 10°C B.S., U.R. 90% Indoor recirculation temperature 20°C B.S., U.R. 50% External air temperature 35°C B.S., U.R. 50% Indoor recirculation temperature 26°C B.S., U.R. 60% ⁽¹⁾ The supply sound power level is calculated at nominal conditions, i.e.: nominal flow rate and external pressure 150 Pa. ⁽²⁾ Both fans were considered (no. 1 in supply and no. 1 in return). ^(*) Thermal efficiency in according with new directive European CE 1253/2014/CE «thermal efficiency of a not residential HRS = ratio between inlet air heat gain and outlet air thermal loss, both referred to external temperature, measured in dry conditions, with a balanced mass flow, and a thermal difference between indoor air / outside air of 20 K, taking not in account the heat gain generated by fan motors and internal leakage. ^{*} For orientation: referred to coil connection side. #### ATTENTION: Is not possible to change orientation on construction site. THE ORIENTATION will be defined in order phase. Otherwise Cetra will proceed with the production of ORIENTATION A. ### **Heat recovery unit RPE** #### LAYOUT INPUT/OUTPUT - VERTICAL ORIENTATION (front view) #### **ATTENTION** If the position for the recuperator input/output is not communicated, Cetra will proceed with the production of A1/B1/C1/D1. The opening position can be switched on site (e.g. from A1 to A2). #### DIMENSIONAL DRAWINGS #### RPE HORIZONTAL LAYOUT WITH EXTERNAL MODULE: (ME) | RPE | 55 ⁽¹⁾ | 110 ⁽¹⁾ | 175 | 220 | 255 | 320 | |------|-------------------|--------------------|------|------|------|------| | H mm | 520* | 520* | 520* | 520* | 600* | 600* | | D mm | 1260 | 1260 | 1705 | 1705 | 2000 | 2000 | | L mm | 2300 | 2300 | 2300 | 2300 | 2600 | 2600 | | å | 160 | 180 | 290 | 300 | 430 | 440 | ⁽¹⁾Any hydronic cooling and heating coil / DX (R410a) will be mounted only for sizes 055-110. $With horizontal\ recuperators\ for\ ceiling\ installation, access\ for\ maintenance\ (e.g.\ for\ replacing\ filters\ and\ fans)$ is lateral or from below. Conversely, for those with floor installation, it is only lateral. | RPE | | 55 | 110 | 175 | 220 | 255 | 320 | |------|-----|------|------|------|------|------|------| | H mm | | 520* | 520* | 520* | 520* | 600* | 600* | | D mm | | 1260 | 1260 | 1705 | 1705 | 2000 | 2000 | | Lmm | | 2800 | 2800 | 3020 | 3020 | 3270 | 3270 | | RG. | RPE | 160 | 180 | 290 | 300 | 430 | 440 | | KG | ME | 50 | 50 | 68 | 68 | 82 | 82 | The external module acts as a containment of the hydronic / DX cooling and heating coil (R410a) only for sizes from 175 to 600 - ACCESSORY. *Consider the additional height of feet = 100 mm, for outdoor application #### RPE VERTICAL LAYOUT WITHOUT EXTERNAL MODULE #### RPE VERTICAL LAYOUT WITH EXTERNAL MODULE: (ME) | RPE | 175 | 220 | 255 | 320 | 410 | 500 | 600 | |------|------|------|------|------|------|------|------| | H mm | 1805 | 1805 | 2100 | 2100 | 2100 | 2100 | 2100 | | L mm | 2300 | 2300 | 2600 | 2600 | 2750 | 2750 | 2900 | | D mm | 580 | 580 | 600 | 600 | 800 | 800 | 950 | | À | 290 | 300 | 430 | 440 | 510 | 530 | 620 | | RPE | | 175 | 220 | 255 | 320 | 410 | 500 | 600 | |------|-----|------|------|------|------|------|------|------| | H mm | | 1805 | 1805 | 2100 | 2100 | 2100 | 2100 | 2100 | | Lmm | | 3020 | 3020 | 3270 | 3270 | 3420 | 3420 | 3570 | | D mm | | 580 | 580 | 600 | 600 | 800 | 800 | 950 | | KIG | RPE | 290 | 300 | 430 | 440 | 510 | 530 | 620 | | ko. | ME | 70 | 70 | 84 | 84 | 90 | 90 | 100 | The external module acts as a containment of the hydronic / DX cooling and heating coil (R410a) only for sizes from 175 to 600 - ACCESSORY. With vertical recuperators, access for maintenance (ex. for filter and fan replacement) is only from the side. Galletti S.p.A. Via L.Romagnoli, 12/a | 40010 Bentivoglio (BO) ITALY T +39 051 8908111 | F +39 051 8908122/3 info@galletti.it | www.galletti.com